Download Free Variational Regularization For Systems Of Inverse Problems Book in PDF and EPUB Free Download. You can read online Variational Regularization For Systems Of Inverse Problems and write the review.

Tikhonov regularization is a cornerstone technique in solving inverse problems with applications in countless scientific fields. Richard Huber discusses a multi-parameter Tikhonov approach for systems of inverse problems in order to take advantage of their specific structure. Such an approach allows to choose the regularization weights of each subproblem individually with respect to the corresponding noise levels and degrees of ill-posedness. Contents General Tikhonov Regularization Specific Discrepancies Regularization Functionals Application to STEM Tomography Reconstruction Target Groups Researchers and students in the field of mathematics Experts in the areas of mathematics, imaging, computer vision and nanotechnology The Author Richard Huber wrote his master's thesis under the supervision of Prof. Dr. Kristian Bredies at the Institute for Mathematics and Scientific Computing at Graz University, Austria.
Tikhonov regularization is a cornerstone technique in solving inverse problems with applications in countless scientific fields. Richard Huber discusses a multi-parameter Tikhonov approach for systems of inverse problems in order to take advantage of their specific structure. Such an approach allows to choose the regularization weights of each subproblem individually with respect to the corresponding noise levels and degrees of ill-posedness.
Provides a basic understanding of both the underlying mathematics and the computational methods used to solve inverse problems.
This open access book, edited and authored by a team of world-leading researchers, provides a broad overview of advanced photonic methods for nanoscale visualization, as well as describing a range of fascinating in-depth studies. Introductory chapters cover the most relevant physics and basic methods that young researchers need to master in order to work effectively in the field of nanoscale photonic imaging, from physical first principles, to instrumentation, to mathematical foundations of imaging and data analysis. Subsequent chapters demonstrate how these cutting edge methods are applied to a variety of systems, including complex fluids and biomolecular systems, for visualizing their structure and dynamics, in space and on timescales extending over many orders of magnitude down to the femtosecond range. Progress in nanoscale photonic imaging in Göttingen has been the sum total of more than a decade of work by a wide range of scientists and mathematicians across disciplines, working together in a vibrant collaboration of a kind rarely matched. This volume presents the highlights of their research achievements and serves as a record of the unique and remarkable constellation of contributors, as well as looking ahead at the future prospects in this field. It will serve not only as a useful reference for experienced researchers but also as a valuable point of entry for newcomers.
We consider inverse problems with statistical (noisy) data. By applying regularization methods one can approximate the true solution of the inverse problem by a regularized solution. In this thesis we show convergence rates of the regularized solution to the true solution as the noise tends to zero under so called source conditions on the true solution. Recently variational source conditions (VSCs) have become increasingly popular, due to their generality. However, they have the disadvantage that they only give optimal rates for low smoothness of the true solution. For this reason a second ...
This book gives an introduction to the practical treatment of inverse problems by means of numerical methods, with a focus on basic mathematical and computational aspects. To solve inverse problems, we demonstrate that insight about them goes hand in hand with algorithms.
We consider statistical inverse problems with statistical noise. By using regularization methods one can approximate the true solution of the inverse problem by a regularized solution. The previous investigation of convergence rates for variational regularization with Poisson and empirical process data is shown to be suboptimal. In this thesis we obtain improved convergence rates for variational regularization methods of nonlinear ill-posed inverse problems with certain stochastic noise models described by exponential families and derive better reconstruction error bounds by applying deviat...
We consider statistical inverse problems with statistical noise. By using regularization methods one can approximate the true solution of the inverse problem by a regularized solution. The previous investigation of convergence rates for variational regularization with Poisson and empirical process data is shown to be suboptimal. In this thesis we obtain improved convergence rates for variational regularization methods of nonlinear ill-posed inverse problems with certain stochastic noise models described by exponential families and derive better reconstruction error bounds by applying deviat...
This volume contains 13 chapters, which are extended versions of the presentations at International Conference on Inverse Problems at Fudan University, Shanghai, China, October 12-14, 2018, in honor of Masahiro Yamamoto on the occasion of his 60th anniversary. The chapters are authored by world-renowned researchers and rising young talents, and are updated accounts of various aspects of the researches on inverse problems. The volume covers theories of inverse problems for partial differential equations, regularization methods, and related topics from control theory. This book addresses a wide audience of researchers and young post-docs and graduate students who are interested in mathematical sciences as well as mathematics.