Download Free Variational Approach To Gravity Field Theories Book in PDF and EPUB Free Download. You can read online Variational Approach To Gravity Field Theories and write the review.

This book offers a detailed and stimulating account of the Lagrangian, or variational, approach to general relativity and beyond. The approach more usually adopted when describing general relativity is to introduce the required concepts of differential geometry and derive the field and geodesic equations from purely geometrical properties. Demonstration of the physical meaning then requires the weak field approximation of these equations to recover their Newtonian counterparts. The potential downside of this approach is that it tends to suit the mathematical mind and requires the physicist to study and work in a completely unfamiliar environment. In contrast, the approach to general relativity described in this book will be especially suited to physics students. After an introduction to field theories and the variational approach, individual sections focus on the variational approach in relation to special relativity, general relativity, and alternative theories of gravity. Throughout the text, solved exercises and examples are presented. The book will meet the needs of both students specializing in theoretical physics and those seeking a better understanding of particular aspects of the subject.
Combining research methods from various areas of mathematics and physics, Probabilistic Models of Cosmic Backgrounds describes the isotropic random sections of certain fibre bundles and their applications to creating rigorous mathematical models of both discovered and hypothetical cosmic backgrounds. Previously scattered and hard-to-find mathematical and physical theories have been assembled from numerous textbooks, monographs, and research papers, and explained from different or even unexpected points of view. This consists of both classical and newly discovered results necessary for understanding a sophisticated problem of modelling cosmic backgrounds. The book contains a comprehensive description of mathematical and physical aspects of cosmic backgrounds with a clear focus on examples and explicit calculations. Its reader will bridge the gap of misunderstanding between the specialists in various theoretical and applied areas who speak different scientific languages. The audience of the book consists of scholars, students, and professional researchers. A scholar will find basic material for starting their own research. A student will use the book as supplementary material for various courses and modules. A professional mathematician will find a description of several physical phenomena at the rigorous mathematical level. A professional physicist will discover mathematical foundations for well-known physical theories.
This book is a concise introduction to the key concepts of classical field theory for beginning graduate students and advanced undergraduate students who wish to study the unifying structures and physical insights provided by classical field theory without dealing with the additional complication of quantization. In that regard, there are many important aspects of field theory that can be understood without quantizing the fields. These include the action formulation, Galilean and relativistic invariance, traveling and standing waves, spin angular momentum, gauge invariance, subsidiary conditions, fluctuations, spinor and vector fields, conservation laws and symmetries, and the Higgs mechanism, all of which are often treated briefly in a course on quantum field theory.
The methods of coupled quantum field theory, which have played a major role in the extensive development of nonrelativistic quantum many-particle theory and condensed matter physics, are at the core of this book.
"A fascinating and thought-provoking story, one that sheds light on the origins of . . . the current challenging situation in physics." -- Wall Street Journal When the fuzzy indeterminacy of quantum mechanics overthrew the orderly world of Isaac Newton, Albert Einstein and Erwin Schröger were at the forefront of the revolution. Neither man was ever satisfied with the standard interpretation of quantum mechanics, however, and both rebelled against what they considered the most preposterous aspect of quantum mechanics: its randomness. Einstein famously quipped that God does not play dice with the universe, and Schröger constructed his famous fable of a cat that was neither alive nor dead not to explain quantum mechanics but to highlight the apparent absurdity of a theory gone wrong. But these two giants did more than just criticize: they fought back, seeking a Theory of Everything that would make the universe seem sensible again. In Einstein's Dice and Schröger's Cat, physicist Paul Halpern tells the little-known story of how Einstein and Schröger searched, first as collaborators and then as competitors, for a theory that transcended quantum weirdness. This story of their quest-which ultimately failed-provides readers with new insights into the history of physics and the lives and work of two scientists whose obsessions drove its progress. Today, much of modern physics remains focused on the search for a Theory of Everything. As Halpern explains, the recent discovery of the Higgs Boson makes the Standard Model-the closest thing we have to a unified theory- nearly complete. And while Einstein and Schröger failed in their attempt to explain everything in the cosmos through pure geometry, the development of string theory has, in its own quantum way, brought this idea back into vogue. As in so many things, even when they were wrong, Einstein and Schröger couldn't help but get a great deal right.
This important book contains selected research papers of Prof Bunji Sakita. Included are his pioneering papers on SU(6) symmetry, strong coupling theory, string theory, supersymmetry and the method of collective coordinates. There is also a vivid personal account of his journey in physics. The book brings to light some of the key concepts of modern high energy physics.
The discovery by Green and Schwarz in 1984 that ten-dimensional superstring theory is anomaly-free and finite only if the Yang-Mills gauge group is SO(32) or E8 x E8 has made the phenomenological possibilities of superstrings evident. Ths has resulted in a sudden surge of interest in superstrings unification. Since this fast-developing field is new to almost all theoretical physicist, this collection of basic pre-1985 references should be very valuable. This two volumes contain over 1000 pages of reprints plus some introductory comments by J Schwarz.
Vladimir Naumovich Gribov is one of the creators of modern theoretical physics. The concepts and methods that Gribov has developed in the second half of the 20th century became cornerstones of the physics of high energy hadron interactions (relativistic theory of complex angular momenta, a notion of the vacuum pole — Pomeron, effective reggeon field theory), condensed matter physics (critical phenomena), neutrino oscillations, and nuclear physics.His unmatched insights into the nature of the quantum field theory helped to elucidate, in particular, the origin of classical solutions (instantons), quantum anomalies, specific problems in quantization of non-Abelian fields (Gribov anomalies, Gribov horizon), and the role of light quarks in the color confinement phenomenon.The fifth memorial workshop which marked Gribov's 85th birthday took place at the Landau Institute for Theoretical Physics, Russia, in June 2015. Participants of the workshop who came to Chernogolovka from different parts of the world presented new results of studies of many challenging theoretical physics problems across a broad variety of topics, and shared memories about their colleague, great teacher and friend.This book is a collection of the presented talks and contributed papers, which affirm the everlasting impact of Gribov's scientific heritage upon the physics of the 21st century.