Download Free Variable Illumination And Invariant Features For Detecting And Classifying Varnish Defects Book in PDF and EPUB Free Download. You can read online Variable Illumination And Invariant Features For Detecting And Classifying Varnish Defects and write the review.

This work presents a method to detect and classify varnish defects on wood surfaces. Since these defects are only partially visible under certain illumination directions, one image doesn't provide enough information for a recognition task. A classification requires inspecting the surface under different illumination directions, which results in image series. The information is distributed along this series and can be extracted by merging the knowledge about the defect shape and light direction.
On the annual Joint Workshop of the Fraunhofer IOSB and the Karlsruhe Institute of Technology (KIT), Vision and Fusion Laboratory, the students of both institutions present their latest research findings on image processing, visual inspection, pattern recognition, tracking, SLAM, information fusion, non-myopic planning, world modeling, security in surveillance, interoperability, and human-computer interaction. This book is a collection of 16 reviewed technical reports of the 2010 Joint Workshop.
The book offers a thorough introduction to machine vision. It is organized in two parts. The first part covers the image acquisition, which is the crucial component of most automated visual inspection systems. All important methods are described in great detail and are presented with a reasoned structure. The second part deals with the modeling and processing of image signals and pays particular regard to methods, which are relevant for automated visual inspection.
In this work, the task of wide-area indoor people detection in a network of depth sensors is examined. In particular, we investigate how the redundant and complementary multi-view information, including the temporal context, can be jointly leveraged to improve the detection performance. We recast the problem of multi-view people detection in overlapping depth images as an inverse problem and present a generative probabilistic framework to jointly exploit the temporal multi-view image evidence.
Optical measurement methods are becoming increasingly important for high-precision production of components and quality assurance. The increasing demand can be met by modern imaging systems with advanced optics, such as light field cameras. This work explores their use in the deflectometric measurement of specular surfaces. It presents improvements in phase unwrapping and calibration techniques, enabling high surface reconstruction accuracies using only a single monocular light field camera.
In dieser Arbeit werden spektral kodierte multispektrale Lichtfelder untersucht, wie sie von einer Lichtfeldkamera mit einem spektral kodierten Mikrolinsenarray aufgenommen werden. Für die Rekonstruktion der kodierten Lichtfelder werden zwei Methoden entwickelt, eine basierend auf den Prinzipien des Compressed Sensing sowie eine Deep Learning Methode. Anhand neuartiger synthetischer und realer Datensätze werden die vorgeschlagenen Rekonstruktionsansätze im Detail evaluiert. -In this work, spatio-spectrally coded multispectral light fields, as taken by a light field camera with a spectrally coded microlens array, are investigated. For the reconstruction of the coded light fields, two methods, one based on the principles of compressed sensing and one deep learning approach, are developed. Using novel synthetic as well as a real-world datasets, the proposed reconstruction approaches are evaluated in detail.
Deep learning is widely applied to sparse 3D data to perform challenging tasks, e.g., 3D object detection and semantic segmentation. However, the high performance of deep learning comes with high costs, including computational costs and the effort to capture and label data. This work investigates and improves the efficiency of deep learning for sparse 3D data to overcome the obstacles to the further development of this technology.
In order to develop a driver assistance system for pedestrian protection, pedestrians in the environment of a truck are detected by radars and a camera and are tracked across distributed fields of view using a Joint Integrated Probabilistic Data Association filter. A robust approach for prediction of the system vehicles trajectory is presented. It serves the computation of a probabilistic collision risk based on reachable sets where different sources of uncertainty are taken into account.
The demand for smart grid and smart home applications has raised the recent interest in power line communication (PLC) technologies, and has driven a broad set of deep surveys in low-voltage (LV) power line channels. This book proposes a set of novel approaches, to characterize and to emulate LV power line channels in the frequency range from0.15to 10 MHz, which closes gaps between the traditional narrowband (up to 500 kHz) and broadband (above1.8 MHz) ranges.
While the spectral information contained in hyperspectral images is rich, the spatial resolution of such images is in many cases very low. Many pixel spectra are mixtures of pure materials' spectra and therefore need to be decomposed into their constituents. This work investigates new decomposition methods taking into account spectral, spatial and global 3D adjacency information. This allows for faster and more accurate decomposition results.