Download Free Vanishing Wave Book in PDF and EPUB Free Download. You can read online Vanishing Wave and write the review.

Following his travels to Japan shortly after the Tohoku earthquake, artist/musician Devendra Banhart produced a series of evocative drawings responding to the natural disaster and its effects on the people of Japan. Exhibitions of these drawings were shown in Tokyo and Kyoto with the purpose to raise funds to support, the Mother's Radiation Lab Fukushima, the Tohoku Youth Orchestra, and the Foster Care for Children in Fukushima. Vanishing Wave is the collection of these ink drawings accompanied by personal texts by Devendra Banhart, Ryuichi Sakamoto, Ryu Takahashi and Yusuke Nagai. A testament to the tide-like characteristics of memory, grief, and pain.
A complete overview of quantum mechanics, covering essential concepts and results, theoretical foundations, and applications. This undergraduate textbook offers a comprehensive overview of quantum mechanics, beginning with essential concepts and results, proceeding through the theoretical foundations that provide the field’s conceptual framework, and concluding with the tools and applications students will need for advanced studies and for research. Drawn from lectures created for MIT undergraduates and for the popular MITx online course, “Mastering Quantum Mechanics,” the text presents the material in a modern and approachable manner while still including the traditional topics necessary for a well-rounded understanding of the subject. As the book progresses, the treatment gradually increases in difficulty, matching students’ increasingly sophisticated understanding of the material. • Part 1 covers states and probability amplitudes, the Schrödinger equation, energy eigenstates of particles in potentials, the hydrogen atom, and spin one-half particles • Part 2 covers mathematical tools, the pictures of quantum mechanics and the axioms of quantum mechanics, entanglement and tensor products, angular momentum, and identical particles. • Part 3 introduces tools and techniques that help students master the theoretical concepts with a focus on approximation methods. • 236 exercises and 286 end-of-chapter problems • 248 figures
Fundamentals of Ship Hydrodynamics: Fluid Mechanics, Ship Resistance and Propulsion Lothar Birk, University of New Orleans, USA Bridging the information gap between fluid mechanics and ship hydrodynamics Fundamentals of Ship Hydrodynamics is designed as a textbook for undergraduate education in ship resistance and propulsion. The book provides connections between basic training in calculus and fluid mechanics and the application of hydrodynamics in daily ship design practice. Based on a foundation in fluid mechanics, the origin, use, and limitations of experimental and computational procedures for resistance and propulsion estimates are explained. The book is subdivided into sixty chapters, providing background material for individual lectures. The unabridged treatment of equations and the extensive use of figures and examples enable students to study details at their own pace. Key features: • Covers the range from basic fluid mechanics to applied ship hydrodynamics. • Subdivided into 60 succinct chapters. • In-depth coverage of material enables self-study. • Around 250 figures and tables. Fundamentals of Ship Hydrodynamics is essential reading for students and staff of naval architecture, ocean engineering, and applied physics. The book is also useful for practicing naval architects and engineers who wish to brush up on the basics, prepare for a licensing exam, or expand their knowledge.
A brave, intimate, beautifully crafted memoir by a survivor of the tsunami that struck the Sri Lankan coast in 2004 and took her entire family. On December 26, Boxing Day, Sonali Deraniyagala, her English husband, her parents, her two young sons, and a close friend were ending Christmas vacation at the seaside resort of Yala on the south coast of Sri Lanka when a wave suddenly overtook them. She was only to learn later that this was a tsunami that devastated coastlines through Southeast Asia. When the water began to encroach closer to their hotel, they began to run, but in an instant, water engulfed them, Sonali was separated from her family, and all was lost. Sonali Deraniyagala has written an extraordinarily honest, utterly engrossing account of the surreal tragedy of a devastating event that all at once ended her life as she knew it and her journey since in search of understanding and redemption. It is also a remarkable portrait of a young family's life and what came before, with all the small moments and larger dreams that suddenly and irrevocably ended.
The book summarizes several mathematical aspects of the vanishing viscosity method and considers its applications in studying dynamical systems such as dissipative systems, hyperbolic conversion systems and nonlinear dispersion systems. Including original research results, the book demonstrates how to use such methods to solve PDEs and is an essential reference for mathematicians, physicists and engineers working in nonlinear science. Contents: Preface Sobolev Space and Preliminaries The Vanishing Viscosity Method of Some Nonlinear Evolution System The Vanishing Viscosity Method of Quasilinear Hyperbolic System Physical Viscosity and Viscosity of Difference Scheme Convergence of Lax–Friedrichs Scheme, Godunov Scheme and Glimm Scheme Electric–Magnetohydrodynamic Equations References
This book highlights the methods to engineer dissipative and magnetic nonlinear waves propagating in nonlinear systems. In the first part of the book, the authors present methodologically mathematical models of nonlinear waves propagating in one- and two-dimensional nonlinear transmission networks without/with dissipative elements. Based on these models, the authors investigate the generation and the transmission of nonlinear modulated waves, in general, and solitary waves, in particular, in networks under consideration. In the second part of the book, the authors develop basic theoretical results for the dynamics matter-wave and magnetic-wave solitons of nonlinear systems and of Bose–Einstein condensates trapped in external potentials, combined with the time-modulated nonlinearity. The models treated here are based on one-, two-, and three-component non-autonomous Gross–Pitaevskii equations. Based on the Heisenberg model of spin–spin interactions, the authors also investigate the dynamics of magnetization in ferromagnet with or without spin-transfer torque. This research book is suitable for physicists, mathematicians, engineers, and graduate students in physics, mathematics, and network and information engineering.
During the last decade significant progress has been made in the field of ship stability. Yet in spite of the progress made, numerous scientific and practical challenges still exist with regard to the accurate prediction of extreme motion and capsize dynamics for intact and damaged vessels, the probabilistic nature of extreme events, criteria that properly reflect the physics and operational safety of an intact or damaged vessel, and ways to provide relevant information on safe ship handling to ship operators. This book provides a comprehensive review of the above issues through the selection of representative papers presented at the unique series of international workshops and conferences on ship stability held between 2000 and 2009. The editorial committee has selected papers for this book from the following events: STAB 2000 Conference (Launceston, Tasmania), 5th Stability Workshop (Trieste, 2001), 6th Stability Workshop (Long Island, 2002), STAB 2003 Conference (Madrid), 7th Stability Workshop (Shanghai, 2004), 8th Stability Workshop (Istanbul, 2005), STAB 2006 Conference (Rio de Janeiro), 9th Stability Workshop (Hamburg, 2007), 10th Stability Workshop (Daejeon, 2008), and STAB 2009 Conference (St. Petersburg). The papers have been clustered around the following themes: Stability Criteria, Stability of the Intact Ship, Parametric Rolling, Broaching, Nonlinear Dynamics, Roll Damping, Probabilistic Assessment of Ship Capsize, Environmental Modelling, Damaged Ship Stability, CFD Applications, Design for Safety, Naval Vessels, and Accident Investigations.
applications to the structure of atomic nuclei. The author systematically develops these models from the elementary level, through an introduction to tensor algebra, to the use of group theory in spectroscopy. The book's extensive and detailed appendix includes a large selection of useful formulae of tensor algebra and spectroscopy. The serious graduate student, as well as the professional physicist, will find this complete treatment of the shell model to be an invaluable addition to the literature.