Download Free Vanadium In The Environment Chemistry And Biochemistry Book in PDF and EPUB Free Download. You can read online Vanadium In The Environment Chemistry And Biochemistry and write the review.

The first comprehensive resource on the chemistry of vanadium, Vanadium: Chemistry, Biochemistry, Pharmacology, and Practical Applications has evolved from over a quarter century of research that concentrated on delineating the aqueous coordination reactions that characterize the vanadium(V) oxidation state. The authors distill information o
How large is the natural variation in concentration of the various elements in different media? How do the oft-cited "World average concentrations" in different media compare with actual analytical data? How low a detection limit do I need to attain if I want to analyse for an element in soils, sediments, water or plants? All these questions and many more can be answered by using this unique reference book. It collates data on the most important properties and uses of all naturally occurring chemical elements. It combines these with data obtained from actual analyses of different sample media (soil, stream sediment, stream water, ground water, plants, human body fluids). This combination of facts and actual data makes this book suitable for learning and teaching applied geochemistry as well.
The importance of metals in biology, the environment and medicine has become increasingly evident over the last twenty five years. The study of the multiple roles of metal ions in biological systems, the rapidly expanding interface between inorganic chemistry and biology constitutes the subject called Biological Inorganic Chemistry. The present text, written by a biochemist, with a long career experience in the field (particularly iron and copper) presents an introduction to this exciting and dynamic field. The book begins with introductory chapters, which together constitute an overview of the concepts, both chemical and biological, which are required to equip the reader for the detailed analysis which follows. Pathways of metal assimilation, storage and transport, as well as metal homeostasis are dealt with next. Thereafter, individual chapters discuss the roles of sodium and potassium, magnesium, calcium, zinc, iron, copper, nickel and cobalt, manganese, and finally molybdenum, vanadium, tungsten and chromium. The final three chapters provide a tantalising view of the roles of metals in brain function, biomineralization and a brief illustration of their importance in both medicine and the environment.Relaxed and agreeable writing style. The reader will not only fiind the book easy to read, the fascinating anecdotes and footnotes will give him pegs to hang important ideas on.Written by a biochemist. Will enable the reader to more readily grasp the biological and clinical relevance of the subject.Many colour illustrations. Enables easier visualization of molecular mechanismsWritten by a single author. Ensures homgeneity of style and effective cross referencing between chapters
The publication of Vanadium: Biochemical and Molecular Biological Approaches is particularly timely as it exactly coincides with the centennial anniversary of the discovery of vanadium by Professor Henze, in the blood cells of an ascidian (tunicate) collected in Gulf of Naples in 1911. Vanadium, atomic number 23, covers a wide range of oxidation states (from -2 to +5) and has unpaired electrons. Depending on these properties, a wide variety of enzymes and compounds containing vanadium have been found and the biochemical behaviour of vanadium has been investigated extensively. This monograph provides not only the basic properties and recent advances of vanadium chemistry but also presents recent topics on hyper-accumulators of vanadium, enzymatic roles of vanadium, biochemical functions of vanadium and medicinal functions of vanadium, which have been discovered by Biochemical and Molecular Biological Approaches. Vanadium: Biochemical and Molecular Biological Approaches is aimed at pure and applied chemists, biochemists, pharmaceutical and medical scientists.
Trace metals occur as natural constituents of the earth's crust, and are ever present constituents of soils, natural waters and living matter. The biological significance of this disparate assemblage of elements has gradually been uncovered during the twentieth century; the resultant picture is one of ever-increasing complexity. Several of these elements have been demonstrated to be essential to the functions of living organisms, others appear to only interact with living matter in a toxic manner, whilst an ever-decreasing number do not fall conveniently into either category. When the interactions between trace metals and plants are considered, one must take full account of the known chemical properties of each element. Consideration must be given to differences in chemical reactivity, solubility and to interactions with other inorganic and organic molecules. A clear understanding of the basic chemical properties of an element of interest is an essential pre-requisite to any subsequent consideration of its biological significance. Due consideration to basic chemical considerations is a theme which runs through the collection of chapters in both volumes.
This book discusses many aspects of plant-nutrient-induced abiotic stress tolerance. It consists of 22 informative chapters on the basic role of plant nutrients and the latest research advances in the field of plant nutrients in abiotic stress tolerance as well as their practical applications. Today, plant nutrients are not only considered as food for plants, but also as regulators of numerous physiological processes including stress tolerance. They also interact with a number of biological molecules and signaling cascades. Although research work and review articles on the role of plant nutrients in abiotic stress tolerance have been published in a range of journals, annual reviews and book chapters, to date there has been no comprehensive book on this topic. As such, this timely book is a valuable resource for a wide audience, including plant scientists, agronomists, soil scientists, botanists, molecular biologists and environmental scientists.
Vanadium is one of the more abundant elements in the Earth’s crust and exhibits a wide range of oxidation states in its compounds making it potentially a more sustainable and more economical choice as a catalyst than the noble metals. A wide variety of reactions have been found to be catalysed by homogeneous, supported and heterogeneous vanadium complexes and the number of applications is growing fast. Bringing together the research on the catalytic uses of this element into one essential resource, including theoretical perspectives on proposed mechanisms for vanadium catalysis and an overview of its relevance in biological processes, this book is a useful reference for industrial and academic chemists alike.
Written by an internationally recognized group of editors and contributors, Handbook of Elemental Speciation, Volume 2 provides a comprehensive, cross-disciplinary presentation of the analytical techniques involved in speciation. Comprehensive coverage of key elements and compounds in situ Addresses the analysis and impact of these elements and compounds, e.g. arsenic, lead, copper, iron, halogens, etc., in food, the environment, clinical and occupational health Detailed methodology and data are reported, as well as regulatory limits Includes general introduction on the impact in these key areas
Comprehensive and multidisciplinary presentation of the current trends in trace elements for human, animals, plants, and the environment This reference provides the latest research into the presence, characterization, and applications of trace elements and their role in humans, animals, and plants as well as their use in developing novel, functional feeds, foods, and fertilizers. It takes an interdisciplinary approach to the subject, describing the biological and industrial applications of trace elements. It covers various topics, such as the occurrence, role, and monitoring of trace elements and their characterization, as well as applications from the preliminary research to laboratory trials. Recent Advances in Trace Elements focuses on the introduction and prospects of trace elements; tackles environmental aspects such as sources of emission, methods of monitoring, and treatment/remediation processes; goes over the biological role of trace elements in plants, animals, and human organisms; and discusses the relevance of biomedical applications and commercialization. A compendium of recent knowledge in interdisciplinary trace element research Uniquely covers production and characterization of trace elements, as well as the industrial and biomedical aspects of their use Paves the way for the development of innovative products in diverse fields, including pharmaceuticals, food, environment, and materials science Edited by well-known experts in the field of trace elements with contributions from international specialists from a wide range of areas Unique in presenting comprehensive and multidisciplinary information of the key aspects of trace elements research in a digestible form, this book is essential reading for the novice and expert in the fields of environmental science, analytical chemistry, biochemistry, materials science, pharmaceutical science, nutraceutical, and pharmaceutical sciences. It is also valuable for companies that implement new products incorporating trace elements to the market.
Handbook on the Toxicology of Metals, Fourth Edition bridges the gap between established knowledgebase and new advances in metal toxicology to provide one essential reference for all those involved in the field. This book provides comprehensive coverage of basic toxicological data, emphasizing toxic effects primarily in humans, but also those of animals and biological systems in vitro. The fourth edition also contains several new chapters on important topics such as nanotoxicology, metals in prosthetics and dental implants, gene-environment interaction, neurotoxicology, metals in food, renal, cardiovascular, and diabetes effects of metal exposures and more. Volume I covers “General Considerations and Volume II is devoted to “Specific Metals. A multidisciplinary resource with contributions from internationally-recognized experts, the fourth edition of the Handbook on the Toxicology of Metals is a prominent and indispensable reference for toxicologists, physicians, pharmacologists, engineers, and all those involved in the toxicity of metals. Contains 61 peer reviewed chapters dealing with the effects of metallic elements and their compounds on biological systems Includes information on sources, transport and transformation of metals in the environment and on certain aspects of the ecological effects of metals to provide a basis for better understanding of the potential for adverse effects on human health Covers the toxicology of metallic nanomaterials in a new comprehensive chapter Metal toxicology in developing countries is dealt with in another new chapter emphasizing the adverse effects on human health by the inadequate handling of "ewaste Other new chapters in the 4th edition include: Toxic metals in food; Toxicity of metals released from medical devices; Gene-environment interactions; Neurotoxicology of metals; Cardiovascular disease; Renal effects of exposure to metals; Gold and gold mining; Iridium; Lanthanum; Lithium and Rhodium