Download Free Value Added Biocomposites Book in PDF and EPUB Free Download. You can read online Value Added Biocomposites and write the review.

Value-Added Biocomposites: Technology, Innovation, and Opportunity explores advances in research, processing, manufacturing, and novel applications of biocomposites. It describes the current market situation, commercial competition, and societal and economic impacts and advantages of substituting biocomposites for conventional composites, including natural fibers and bioplastics. FEATURES Discusses manufacturing and processing procedures that focus on improving physical, mechanical, thermal, electrical, chemical, and biological properties and achieving required specifications of downstream industries and customers Analyzes the wide range of available base materials and fillers of biocomposites and bioplastics in terms of the strength and weaknesses of materials and economic potential in the market Displays special and unique properties of biocomposites in different market sectors Showcases the insight of expert scientists and engineers with first-hand experience working with biocomposites across various industries Covers environmental factors, life cycle assessment, and waste recovery Combining technical, economic, and environmental topics, this work provides researchers, advanced students, and industry professionals a holistic overview of the value that biocomposites add across a variety of engineering applications and how to balance research and development with practical results.
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.
Natural/Biofiber composites are emerging as a viable alternative to glass fiber composites, particularly in automotive, packaging, building, and consumer product industries, and becoming one of the fastest growing additives for thermoplastics. Natural Fibers, Biopolymers, and Biocomposites provides a clear understanding of the present state
Biocomposites: Design and Mechanical Performance describes recent research on cost-effective ways to improve the mechanical toughness and durability of biocomposites, while also reducing their weight. Beginning with an introduction to commercially competitive natural fiber-based composites, chapters then move on to explore the mechanical properties of a wide range of biocomposite materials, including polylactic, polyethylene, polycarbonate, oil palm, natural fiber epoxy, polyhydroxyalkanoate, polyvinyl acetate, polyurethane, starch, flax, poly (propylene carbonate)-based biocomposites, and biocomposites from biodegradable polymer blends, natural fibers, and green plastics, giving the reader a deep understanding of the potential of these materials. - Describes recent research to improve the mechanical properties and performance of a wide range of biocomposite materials - Explores the mechanical properties of a wide range of biocomposite materials, including polylactic, polyethylene, polycarbonate, oil palm, natural fiber epoxy, polyhydroxyalkanoate, polyvinyl acetate, and polyurethane - Evaluates the potential of biocomposites as substitutes for petroleum-based plastics in industries such as packaging, electronic, automotive, aerospace and construction - Includes contributions from leading experts in this field
Explore the world of biocomposites with this one-stop resource edited by four international leaders in the field Bio-based Composites: Characterization, Properties, and Applications delivers a comprehensive treatment of all known characterization methods, properties, and industry applications of bio-based composites materials. This unique, one-stop resource covers all major developments in the field from the last decade of research into this environmentally beneficial area. The internationally recognized editors have selected resources that represent advances in the mechanical, thermal, tribological, and water sorption properties of bio-based composites, and cover new areas of research in physico-chemical analysis, flame retardancy, failure mechanisms, lifecycle assessment, and modeling of bio-based composites. The low weight, low cost, excellent thermal recyclability, and biodegradability of bio-based composites make them ideal candidates to replace engineered plastic products derived from fossil fuel. This book provides its readers with the knowledge they’ll require to understand a new class of materials increasingly being used in the automotive and packaging industries, aerospace, the military, and construction. It also includes: An extended discussion of the environmental impact of bio-based composites using a lice cycle methodology A review of forecasts of natural fiber reinforced polymeric composites and its degradability concerns An analysis of the physical and mechanical properties of a bio-based composite with sisal powder A comprehensive treatment of the mechanical, thermal, tribological, and dielectric properties of bio-based composites A review of processing methods for the manufacture of bio-based composites Perfect for materials scientists in private industry, government laboratories, or engaged in academic research, Bio-Based Composites will also earn a place in the libraries of industrial and manufacturing engineers who seek a better understanding of the beneficial industrial applications of biocomposites in industries ranging from automobiles to packaging.
Vinyl Ester-Based Biocomposites provides a comprehensive review of the recent developments, characterization, and applications of natural fiber-reinforced vinyl ester biocomposites. It also addresses the importance of natural fiber reinforcement on the mechanical, thermal, and interfacial properties. The book explores the widespread applications of natural fibre-reinforced vinyl ester composites ranging from the aerospace sector, automotive parts, construction and building materials, sports equipment, to household appliances. Investigating the moisture absorption and ageing on the physio-chemical, mechanical, and thermal properties of the vinyl ester-based composites, this book also considers the influence of hybridization, fibre architecture, and fiber-ply orientation. The book serves as a useful reference for researchers, graduate students, and engineers in the field of polymer composites.
Wood composites have shown very good performance and substantial service lives when correctly specified for the exposure risks present. The selection of an appropriate product for the job should be accompanied by decisions about the appropriate protection, whether this is by design, by preservative treatment, or by wood modification techniques. This Special Issue, “Advances in Wood Composites II”, presents recent progress in enhancing and refining the performance and properties of wood composites by chemical and thermal modification and the application of smart nanomaterials. Such enhancements and refinements have made wood composites a particular area of interest for researchers. In addition, this Special Issue reviews some important aspects in the field of wood composites, with particular focus on their materials, applications, and engineering and scientific advances, including solutions inspired biomimetically by the structure of wood and wood composites. This Special Issue, as a collection of 14 original contributions, provides selected examples of recent advances in wood composites.
This edited book discusses various processes of feedstocks bioconversion such as bioconversion of food waste, human manure, industrial waste, beverage waste, kitchen waste, organic waste, fruit and vegetable, poultry waste, solid waste, agro-industrial waste, cow dung, steroid, lignocellulosic residue, biomass, natural gas etc. Nowadays, the industrial revolution and urbanization have made human life comfortable. However, this requires excess usage of natural resources starting from food and food products, to energy resources, materials as well as chemicals. The excess use of natural resources for human comfort is expected to high fuel prices, decline natural resources as well as cause a huge hike in the cost of raw materials. These factors are pushing researchers to grow environmentally friendly processes and techniques based on inexpensive and sustainable feedstock to accomplish such worldwide targets. Bioconversion, otherwise called biotransformation, is the change of natural materials, for example, plant or animal waste, into usable items or energy sources by microorganisms. Bioconversion is an environmentally friendly benevolent choice to supplant the well-established chemical procedures utilized these days for the production of chemicals and fuels. A variety of alternatives advancements are being considered and are directly accessible to acquire diverse valuable end-products through bioprocesses. This book discusses in detail the process and techniques of bioconversion by focusing on the organic feedstock of animal and plant origin. It brings solutions to the bioconversion of various feedstock into value-added products.
This book introduces the different advanced hybrid composite materials used in aerospace, automotive, marine, and general engineering infrastructures. It represents the current development processes and applications in aircraft, automobile, and marine structures. This book also contains test cases and their validation using a finite element approach using computer tools. The book also deals with the design approach for innovative hybrid composite materials focused on diverse engineering and non-engineering applications. A detailed review of the state-of-the-art composite materials study presented here would be of interest to scientists, academics, students, and engineers and professionals in general working in the field of advanced composite materials and structures. This book is also useful for Ph.D. research scholars to improve their fundamental understanding of advanced materials and is also suitable for master’s and undergraduate courses on composite materials.