Download Free Utilization Of Genetic Resources Book in PDF and EPUB Free Download. You can read online Utilization Of Genetic Resources and write the review.

• First ever collection of findings about the proliferation of urban agriculture written by the world’s leading authority in the field• Urban agriculture feeds hundreds of millions of people worldwide and is a rapidly emerging issue in urban and developm
This anchor volume to the series Managing Global Genetic Resources examines the structure that underlies efforts to preserve genetic material, including the worldwide network of genetic collections; the role of biotechnology; and a host of issues that surround management and use. Among the topics explored are in situ versus ex situ conservation, management of very large collections of genetic material, problems of quarantine, the controversy over ownership or copyright of genetic material, and more.
This important 2-volume reference book is the first comprehensive resource reflecting the current global status and prospects of date palm cultivation by country. This volume covers Africa and the Americas. Countries included are: Egypt, Algeria, Sudan, Tunisia, Libya, Morocco, Mauritania, Niger, Cameroon, Djibouti, Chad, Mali Somalia, Ethiopia, Burkina Faso and Senegal, as well as the United States of America and the South American countries Chile and Peru. Topics discussed are: cultivation practices; genetic resources and breeding; conservation and germplasm banks; cultivar classification and identification based on morphological and molecular markers; micropropagation and progress toward scale-up production; and advances in dates processing and marketing. Chapters are supported by tables and color photographs. Appendixes summarize traits and distribution of major cultivars, commercial resources of offshoots and in vitro plants; and institutions and scientific societies concerned with date palm.
The conservation of crop genetic resources is one of the important elements in efforts to sustainably increase agricultural production in low-income countries, and to guarantee long-term food security, especially for the low-income population groups in these countries. Horticultural crops, as high-value crops, have an important role to play in revitalizing rural economies and can add significantly to national economies. Moreover, horticulture provides more than twice the number of jobs compared to traditional cereal crop production, and the shifting of conventional agriculture towards high-value horticulture has increased employment opportunities in developing countries. To exploit this potential, researchers need a vast array of horticultural genetic resources and information on new traits. Horticultural crops, which are only a part of PGRFA (Plant Genetic Resources for Food and Agriculture), are characterized by a wide and varied range of species. In fact, there are five major horticultural crop groups: fruit and nut crops, vegetables, food legumes, roots and tubers, and lastly the ornamental and medicinal group. In this context, the present book provides a comprehensive overview of the current state of conservation and utilization of horticultural genetic resources, addressing contemporary approaches to conservation in connection with different technologies, including biotechnological approaches as practised in India and in some cases, globally. It includes a brief chapter on the unique nature of horticultural genetic resources, providing a rationale for viewing them as being distinct from field crop genetic resources. Subsequent chapters share insights on protocols for the conservation of selected horticultural crops ex situ, and focus on the increased need to complement these efforts with in situ conservation approaches. Geospatial tools are also briefly described, emphasizing their utility with regard to mapping and managing resources. The book also explores the wild gene pool in horticulture crops; discusses legal aspects related to horticultural genetic resources and biotechnological aspects; and describes the key aspects of sustainable management and replenishment. Given its scope, the book offers a valuable resource for all horticulturists, graduate students, researchers, policymakers, conservationists, and NGOs engaged in horticulture in particular and biodiversity in general.
Genetic and Genomic Resources For Cereals Improvement is the first book to bring together the latest available genetic resources and genomics to facilitate the identification of specific germplasm, trait mapping, and allele mining that are needed to more effectively develop biotic and abiotic-stress-resistant grains. As grain cereals, including rice, wheat, maize, barley, sorghum, and millets constitute the bulk of global diets, both of vegetarian and non-vegetarian, there is a greater need for further genetic improvement, breeding, and plant genetic resources to secure the future food supply. This book is an invaluable resource for researchers, crop biologists, and students working with crop development and the changes in environmental climate that have had significant impact on crop production. It includes the latest information on tactics that ensure that environmentally robust genes and crops resilient to climate change are identified and preserved. - Provides a single-volume resource on the global research work on grain cereals genetics and genomics - Presents information for effectively managing and utilizing the genetic resources of this core food supply source - Includes coverage of rice, wheat, maize, barley, sorghum, and pearl, finger and foxtail millets
The Convention on Biological Diversity (CBD) strives for the sustainable and equitable utilization of genetic resources, with the ultimate goal of conserving biodiversity. The CBD and the Nagoya Protocol which has since been elaborated suggest a bilateral model for access to genetic resources and the sharing of benefits from their utilization. There is concern that the bilateral exchange "genetic resource for benefit sharing" could have disappointing results because providers are left out of the process of research and development, benefits are difficult to be traced to sources, and providers owning the same resource may complain of being excluded from benefit sharing. Thus, the CBD objective of full utilization and equitability may become flawed. Common Pools of Genetic Resources: Equity and Innovation in International Biodiversity Law suggests common pools as a complementary approach to bilateralism. This is one of the first books to reply to a number of complex legal questions related to the interpretation and implementation of the Nagoya Protocol. Taking an inductive approach, it describes existing pools and analyzes how they are organized and how they perform in terms of joint R&D and benefit sharing. It presents case studies of the most characteristic types of common pools, provides suggestions for further developing existing pools to cope with the requirements of the CBD and NP and, at the same time uses the clauses these conventions contain to open up for commons approaches. Written by a team of expert academics and practitioners in the field, this innovative book makes a timely and valuable contribution to academic and policy debates in international environmental law, international biodiversity law, intellectual property law, climate law and the law of indigenous populations.
The cacao (Theobroma cacao) plant is an important Neo-Tropical species whose natural habitat is the Amazon basin. Over the last 30 years there has been a considerable geographical expansion in the availability of cacao genetic resources. As a result the plant has a rich genetic diversity that exists at two levels: that of the primitive populations in the area of original distribution of the species, and that of the derived cultivated populations. This book provides a comprehensive review of our current knowledge of the diversity of the species. It starts by examining the diversity and inheritance of the characteristics of primitive populations in the Amazonian and Caribbean regions. It then looks at the evolution of diversity within cultivated populations first in South America and around the Caribbean, and then beyond the Americas. The book describes the inter-relationships between populations based on morphological and molecular markers. It also examines the conservation of genetic resources and how these genetic resources can be utilized to produce new cultivars.
The conservation, sustainable use and development of aquatic genetic resources (AqGR) is critical to the future supply of fish. The State of the World’s Aquatic Genetic Resources for Food and Agriculture is the first ever global assessment of these resources, with the scope of this first Report being limited to cultured AqGR and their wild relatives, within national jurisdiction. The Report draws on 92 reports from FAO member countries and five specially commissioned thematic background studies. The reporting countries are responsible for 96 percent of global aquaculture production. The Report sets the context with a review of the state of world’s aquaculture and fisheries and includes overviews of the uses and exchanges of AqGR, the drivers and trends impacting AqGR and the extent of ex situ and in situ conservation efforts. The Report also investigates the roles of stakeholders in AqGR and the levels of activity in research, education, training and extension, and reviews national policies and the levels of regional and international cooperation on AqGR. Finally, needs and challenges are assessed in the context of the findings from the data collected from the countries. The Report represents a snapshot of the present status of AqGR and forms a valuable technical reference document, particularly where it presents standardized key terminology and concepts.
The recent development of ideas on biodiversity conservation was already being considered almost three-quarters of a century ago for crop plants and the wild species related to them, by the Russian geneticist N.!. Vavilov. He was undoubtedly the first scientist to understand the impor tance for humankind of conserving for utilization the genetic diversity of our ancient crop plants and their wild relatives from their centres of diversity. His collections showed various traits of adaptation to environ mental extremes and biotypes of crop diseases and pests which were unknown to most plant breeders in the first quarter of the twentieth cen tury. Later, in the 1940s-1960s scientists began to realize that the pool of genetic diversity known to Vavilov and his colleagues was beginning to disappear. Through the replacement of the old, primitive and highly diverse land races by uniform modem varieties created by plant breed ers, the crop gene pool was being eroded. The genetic diversity of wild species was equally being threatened by human activities: over-exploita tion, habitat destruction or fragmentation, competition resulting from the introduction of alien species or varieties, changes and intensification of land use, environmental pollution and possible climate change.
One of the world centers of crop evolution and origin, Ethiopia has long been recognized as an important area of diversity for several major and various minor crops. Based on an international conference held in Addis Ababa, this book describes how plant genetic diversity in Ethiopia is of vital importance in breeding new varieties of crops with desirable characteristics, such as increased resistance to pests and diseases and greater adaptation to heat and drought. The three main sections in the book consider the Ethiopian center of diversity, germ plasm or genetic material collection and conservation in Ethiopia, and the evaluation and utilization of Ethiopian genetic resources. A broad range of food and feed crops and plants of medicinal and industrial importance are discussed, both at a national and international level. A brief account of conservation strategies and gene bank problems unique to Ethiopia is also given. The importance of Ethiopia's plant genetic resources to world agriculture has been demonstrated on more than one occasion. Plant breeders, geneticists, and botanists throughout the world will, therefore, find this unique book a valuable source of information and an essential reference work.