Download Free Using Visible And Near Infrared Diffuse Reflectance Spectroscopy To Characterize And Classify Soil Profiles Book in PDF and EPUB Free Download. You can read online Using Visible And Near Infrared Diffuse Reflectance Spectroscopy To Characterize And Classify Soil Profiles and write the review.

Visible and near infrared diffuse reflectance spectroscopy (VisNIR-DRS) is a method being investigated for quantifying soil properties and mapping soil profiles. Because a VisNIR-DRS system mounted in a soil penetrometer is now commercially available for scanning soil profiles in situ, methodologies for using scans to map soils and quantify soil properties are needed. The overall goal of this research is to investigate methodologies for collecting and analyzing VisNIR-DRS scans of intact soil profiles to identify soil series. Methodologies tested include scanning at variable versus uniform moistures, using individual versus averaged spectra, boosting an intact spectral library with local samples, and comparing quantitative and categorical classifications of soil series. Thirty-two soil cores from two fields, representing three soil series, were extracted and scanned every 2.5 cm from the soil surface to 1.5 m or to the depth of parent material at variable field moist conditions and at uniform moist condition. Laboratory analyses for clay, sand, and silt were performed on each horizon. Soil series were classified using partial least squares regression (PLS) and linear discriminant analysis (LDA). A Central Texas intact spectral library (n=70 intact cores) was used for PLS modeling, alone and boosted with the two fields. Because whole-field independent validation was used, relative percent difference (RPD) values were used to compare model performance. Wetting soils to uniform moisture prior to scanning improved prediction accuracy of total clay and RPD improved by 53 percent. Averaging side-by-side scans of the same soil profile improved prediction accuracy of RPD by 10 percent. When creating calibration models, boosting a library with local samples improved prediction accuracy of clay content by 80 and 34 percent for the two fields. Principal component plots provided insight on the spectral similarities between these datasets. Overall, using PLS alone performed the same as LDA at predicting soil series. Most importantly, results of this project reiterate the importance of fully-independent calibration and validation for assessing the true potential of VisNIR-DRS. Using VisNIR-DRS is an effective way for in situ characterization and classification of soil properties.
This book reports on developments in Proximal Soil Sensing (PSS) and high resolution digital soil mapping. PSS has become a multidisciplinary area of study that aims to develop field-based techniques for collecting information on the soil from close by, or within, the soil. Amongst others, PSS involves the use of optical, geophysical, electrochemical, mathematical and statistical methods. This volume, suitable for undergraduate course material and postgraduate research, brings together ideas and examples from those developing and using proximal sensors and high resolution digital soil maps for applications such as precision agriculture, soil contamination, archaeology, peri-urban design and high land-value applications, where there is a particular need for high spatial resolution information. The book in particular covers soil sensor sampling, proximal soil sensor development and use, sensor calibrations, prediction methods for large data sets, applications of proximal soil sensing, and high-resolution digital soil mapping. Key themes: soil sensor sampling – soil sensor calibrations – spatial prediction methods – reflectance spectroscopy – electromagnetic induction and electrical resistivity – radar and gamma radiometrics – multi-sensor platforms – high resolution digital soil mapping - applications Raphael A. Viscarra Rossel is a scientist at the Commonwealth Scientific and Industrial Research Organisation (CSIRO) of Australia. Alex McBratney is Pro-Dean and Professor of Soil Science in the Faculty of Agriculture Food & Natural Resources at the University of Sydney in Australia. Budiman Minasny is a Senior Research Fellow in the Faculty of Agriculture Food & Natural Resources at the University of Sydney in Australia.
The Soils of Bulgaria offers a comprehensive analysis of the characteristics of soils and concepts on their magnitude. The purpose of the book is to introduce readers to the soil problematic and ecology in Bulgaria. The volume is divided into 3 parts. The first includes historical facts on soil research in Bulgaria, as well as general conditions and factors of soil formation, while the second applies an original pedological approach. The book’s third part focuses on essential information concerning land use/cover in Bulgaria. Each of the 13 chapters deals more specifically with fundamental chemical and physical soil properties, concepts of soil evolution, old and modern processes, geographic distribution, climatic conditions, topography, parent materials, plant associations, morphology and the relationship with different classification systems. The interactions between soil status and management are also highlighted. The use of the latest, statistically significant data ensures precise conclusions. The book also includes a large number of charts and new illustrations. The Soils of Bulgaria is crucial reading material for anyone interested in soil management and agriculture in Easter Europe, from students to policy makers and is also of particular interest for researchers in the field.
GlobalSoilMap: Basis of the global spatial soil information system contains contributions that were presented at the 1st GlobalSoilMap conference, held 7-9 October 2013 in Orléans, France. These contributions demonstrate the latest developments in the GlobalSoilMap project and digital soil mapping technology for which the ultimate aim is to produce a high resolution digital spatial soil information system of selected soil properties and their uncertainties for the entire world. GlobalSoilMap: Basis of the global spatial soil information system aims to stimulate capacity building and new incentives to develop full GlobalSoilMap products in all parts of the world.
“A primer on soil analysis using visible and near-infrared (vis-NIR) and mid-infrared (MIR) spectroscopy” is the first training material on the topic of soil spectroscopy for beginner levels, by the Global Soil Laboratory Network Initiative on Soil Spectroscopy (GLOSOLAN-Spec) of the Global Soil Partnership, FAO. This document provides an introduction to the use of soil spectroscopy for soil analysis and covers the basic and fundamental procedures for using this technology for soil analysis. The series “Soil spectroscopy training material” is part of the Global Soil Laboratory Network (GLOSOLAN) to strengthen the capacity of laboratories in soil analysis. It provides a series of training materials covering wide range of topics in soil vis-NIR and MIR spectroscopy. The overall objective is to develop national and regional soil spectral libraries with an estimation service, and to provide advisory services on appropriate instrumentation.
Advances in Agronomy continues to be recognized as a leading reference and a first-rate source for the latest research in agronomy. As always, the subjects covered are varied and exemplary of the myriad of subject matter dealt with by this long-running serial. - Maintains the highest impact factor among serial publications in agriculture - Presents timely reviews on important agronomy issues - Enjoys a longstanding reputation for excellence in the field
Comprehensive overview of the spectroscopic, mineralogical, and geochemical techniques used in planetary remote sensing.
A treatise on soil cartography, it deals with methods and techniques, use of computers, and application of statistics for mapping soil cover and covers things required for the interpretation of results obtained, and for determining the most economical itinerary to attain that purpose.