Download Free Using Subsequence Mining To Identify Business Processes In Data Networks Book in PDF and EPUB Free Download. You can read online Using Subsequence Mining To Identify Business Processes In Data Networks and write the review.

One of the major challenges facing organization studies has been for a long time to develop an operational content to the notion of routines . This book offers important advances in this direction, both conceptually and through illuminating case studies. Giovanni Dosi, Sant Anna School of Advanced Studies, Pisa, Italy This book showcases advanced empirical research that applies the concept of organizational routines to understanding organizations and how they change and evolve. The contributions gathered in the book cover qualitative, quantitative, and archival methods for empirical research applying the concept of organizational routines. Specific issues highlighted include the use of event-sequence methods in the analysis of organizational routines, the impact of standard operating procedures on recurrent behaviour patterns, and the stability, resilience, and change of organizational routines. The book thus provides an overview of different empirical methods applied to study organizational routines, and of their prerequisites, analytical power, and contribution. This comprehensive book will be of great interest to scholars and postgraduate students in the fields of organization theory, strategy, and organization behaviour. Researchers in organization, management and economic science, organizational change and evolutionary theories will also find this book invaluable.
Data Analytics for Intelligent Transportation Systems provides in-depth coverage of data-enabled methods for analyzing intelligent transportation systems (ITS), including the tools needed to implement these methods using big data analytics and other computing techniques. The book examines the major characteristics of connected transportation systems, along with the fundamental concepts of how to analyze the data they produce. It explores collecting, archiving, processing, and distributing the data, designing data infrastructures, data management and delivery systems, and the required hardware and software technologies. It presents extensive coverage of existing and forthcoming intelligent transportation systems and data analytics technologies. All fundamentals/concepts presented in this book are explained in the context of ITS. Users will learn everything from the basics of different ITS data types and characteristics to how to evaluate alternative data analytics for different ITS applications. They will discover how to design effective data visualizations, tactics on the planning process, and how to evaluate alternative data analytics for different connected transportation applications, along with key safety and environmental applications for both commercial and passenger vehicles, data privacy and security issues, and the role of social media data in traffic planning. Data Analytics for Intelligent Transportation Systems will prepare an educated ITS workforce and tool builders to make the vision for safe, reliable, and environmentally sustainable intelligent transportation systems a reality. It serves as a primary or supplemental textbook for upper-level undergraduate and graduate ITS courses and a valuable reference for ITS practitioners. - Utilizes real ITS examples to facilitate a quicker grasp of materials presented - Contains contributors from both leading academic and commercial domains - Explains how to design effective data visualizations, tactics on the planning process, and how to evaluate alternative data analytics for different connected transportation applications - Includes exercise problems in each chapter to help readers apply and master the learned fundamentals, concepts, and techniques - New to the second edition: Two new chapters on Quantum Computing in Data Analytics and Society and Environment in ITS Data Analytics
Understanding sequence data, and the ability to utilize this hidden knowledge, will create a significant impact on many aspects of our society. Examples of sequence data include DNA, protein, customer purchase history, web surfing history, and more. This book provides thorough coverage of the existing results on sequence data mining as well as pattern types and associated pattern mining methods. It offers balanced coverage on data mining and sequence data analysis, allowing readers to access the state-of-the-art results in one place.
Complete guidance for mastering the tools and techniques of the digital revolution With the digital revolution opening up tremendous opportunities in many fields, there is a growing need for skilled professionals who can develop data-intensive systems and extract information and knowledge from them. This book frames for the first time a new systematic approach for tackling the challenges of data-intensive computing, providing decision makers and technical experts alike with practical tools for dealing with our exploding data collections. Emphasizing data-intensive thinking and interdisciplinary collaboration, The Data Bonanza: Improving Knowledge Discovery in Science, Engineering, and Business examines the essential components of knowledge discovery, surveys many of the current research efforts worldwide, and points to new areas for innovation. Complete with a wealth of examples and DISPEL-based methods demonstrating how to gain more from data in real-world systems, the book: Outlines the concepts and rationale for implementing data-intensive computing in organizations Covers from the ground up problem-solving strategies for data analysis in a data-rich world Introduces techniques for data-intensive engineering using the Data-Intensive Systems Process Engineering Language DISPEL Features in-depth case studies in customer relations, environmental hazards, seismology, and more Showcases successful applications in areas ranging from astronomy and the humanities to transport engineering Includes sample program snippets throughout the text as well as additional materials on a companion website The Data Bonanza is a must-have guide for information strategists, data analysts, and engineers in business, research, and government, and for anyone wishing to be on the cutting edge of data mining, machine learning, databases, distributed systems, or large-scale computing.
Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data
This comprehensive reference consists of 18 chapters from prominent researchers in the field. Each chapter is self-contained, and synthesizes one aspect of frequent pattern mining. An emphasis is placed on simplifying the content, so that students and practitioners can benefit from the book. Each chapter contains a survey describing key research on the topic, a case study and future directions. Key topics include: Pattern Growth Methods, Frequent Pattern Mining in Data Streams, Mining Graph Patterns, Big Data Frequent Pattern Mining, Algorithms for Data Clustering and more. Advanced-level students in computer science, researchers and practitioners from industry will find this book an invaluable reference.
Data Warehousing and Mining (DWM) is the science of managing and analyzing large datasets and discovering novel patterns and in recent years has emerged as a particularly exciting and industrially relevant area of research. Prodigious amounts of data are now being generated in domains as diverse as market research, functional genomics and pharmaceuticals; intelligently analyzing these data, with the aim of answering crucial questions and helping make informed decisions, is the challenge that lies ahead. The Encyclopedia of Data Warehousing and Mining provides a comprehensive, critical and descriptive examination of concepts, issues, trends, and challenges in this rapidly expanding field of data warehousing and mining (DWM). This encyclopedia consists of more than 350 contributors from 32 countries, 1,800 terms and definitions, and more than 4,400 references. This authoritative publication offers in-depth coverage of evolutions, theories, methodologies, functionalities, and applications of DWM in such interdisciplinary industries as healthcare informatics, artificial intelligence, financial modeling, and applied statistics, making it a single source of knowledge and latest discoveries in the field of DWM.
This book constitutes the refereed proceedings at PAKDD Workshops 2015, held in conjunction with PAKDD, the 19th Pacific-Asia Conference on Knowledge Discovery and Data Mining in Ho Chi Minh City, Vietnam, in May 2015. The 23 revised papers presented were carefully reviewed and selected from 57 submissions. The workshops affiliated with PAKDD 2015 include: Pattern Mining and Application of Big Data (BigPMA), Quality Issues, Measures of Interestingness and Evaluation of data mining models (QIMIE), Data Analytics for Evidence-based Healthcare (DAEBH), Vietnamese Language and Speech Processing (VLSP).
Volume IV of the Transactions on Rough Sets (TRS) introduces a number of new advances in the theory and application of rough sets. Rough sets and - proximationspaceswereintroducedmorethan30yearsagobyZdzis lawPawlak. These advances have profound implications in a number of research areas such as the foundations of rough sets, approximate reasoning, arti?cial intelligence, bioinformatics,computationalintelligence, cognitivescience, intelligentsystems, datamining,machineintelligence,andsecurity. Inaddition,itisevidentfromthe papers included in this volume that the foundations and applications of rough sets is a very active research area worldwide. A total of 16 researchers from 7 countries are represented in this volume, namely, Canada, India, Norway, S- den, Poland, Russia and the United States of America. Evidence of the vigor, breadth and depth of research in the theory and applications of rough sets can be found in the 10 articles in this volume. Prof. Pawlak has contributed a treatise on the philosophical underpinnings of rough sets. In this treatise, observations are made about the Cantor notion of a set, antinomies arising from Cantor sets, the problem of vagueness (es- cially, vague (imprecise) concepts), fuzzy sets, rough sets, fuzzy vs. rough sets as well as logic and rough sets. Among the many vistas and research directions suggested by Prof. Pawlak, one of the most fruitful concerns the model for a rough membership function, which was incarnated in many di?erent forms since its introduction by Pawlakand Skowronin 1994. Recall, here, that Prof.
This book primarily discusses issues related to the mining aspects of data streams and it is unique in its primary focus on the subject. This volume covers mining aspects of data streams comprehensively: each contributed chapter contains a survey on the topic, the key ideas in the field for that particular topic, and future research directions. The book is intended for a professional audience composed of researchers and practitioners in industry. This book is also appropriate for advanced-level students in computer science.