Download Free Uses Of Immobilized Biological Compounds Book in PDF and EPUB Free Download. You can read online Uses Of Immobilized Biological Compounds and write the review.

On May 4-8, 1987, a NATO Advanced Research Workshop on the Analytical Uses of Immobilized Biological Compounds was held in Florence, Italy. The Director of the Workshop was Professor George G. Guilbault of the University of New Orleans, and the Co-Director was Professor Marco Mascini of the University of Florence It vas the purpose of this meeting to assemble scientists from all NATO Countries with an interest in immobilized biological compounds. to discuss - methods of immobilization - properties of immobilized compounds - enzyme electrodes and biosensors - optical devices utilizing immobilized enzymes - microbial sensors and clinical uses of immobilized enzymes - flow injection analysis using enzymes - immobilized biological compounds in chemical defense detection - pharmaceutical analysis - uses in industrial analysis - enzyme reactors - air pollution detectors - immunosensors - medical uses and applications - solid state and FET sensors Goals to be achieved by the conference were - to permit an exchange of views and experience in all these areas - to review and critically assess the state-of-the-art in these fields - to set guidelines for future research and establish collaborative projects between scientists in NATO laboratories in the above areas. Thirty-seven lectures were given by 36 speakers in all of the above areas.
In Uses of Immobilized Biological Compounds the reader will find a comprehensive survey of the field written by acknowledged experts who met in Brixen, Italy, between May 9 and 14, 1993 for a NATO Advanced Research Workshop devoted to the topic. The resulting volume presents a critical review of the latest results in the area and sets guidelines for future research. The 53 reports presented here cover: (A) General Aspects of Immobilizing Biological Compounds; (B) Medical, Clinical and Pharmaceutical Applications; (C) Electrochemical Biosensors; (E) Defense Applications; (F) Immunosensors and Receptors; (G) Food, Environmental, Clinical and Analytical Applications; and (H) Biotechnology and Marketing. In short, all aspects of the area are presented, in a compact format which will appeal to undergraduates, technicians, and professional scientists in the food, clinical, environmental, pharmaceutical and industrial fields.
An authoritative summary of the quest for an environmentally sustainable synthesis process of nanomaterials and their application for environmental sustainability Green Synthesis of Nanomaterials for Bioenergy Applications is an important guide that provides information on the fabrication of nanomaterial and the application of low cost, green methods. The book also explores the impact on various existing bioenergy approaches. Throughout the book, the contributors—noted experts on the topic—offer a reliable summary of the quest for an environmentally sustainable synthesis process of nanomaterials and their application to the field of environmental sustainability. The green synthesis of nanoparticles process has been widely accepted as a promising technique that can be applied to a variety of fields. The green nanotechnology-based production processes to fabricate nanomaterials operates under green conditions without the intervention of toxic chemicals. The book’s exploration of more reliable and sustainable processes for the synthesis of nanomaterials, can lead to the commercial application of the economically viability of low-cost biofuels production. This important book: Summarizes the quest for an environmentally sustainable synthesis process of nanomaterials for their application to the field of environmental sustainability Offers an alternate, sustainable green energy approach that can be commercially implemented worldwide Covers recent approaches such as fabrication of nanomaterial that apply low cost, green methods and examines its impact on various existing bioenergy applications Written for researchers, academics and students of nanotechnology, nanosciences, bioenergy, material science, environmental sciences, and pollution control, Green Synthesis of Nanomaterials for Bioenergy Applications is a must-have guide that covers green synthesis and characterization of nanomaterials for cost effective bioenergy applications.
This book is a practical guide to the preparation and use of immobilized affinity ligands for purification, catalysis, and analysis. Special emphasis is given to immunochemical techniques including antibody isolation, preparation of antibody fragments using immobilized enzymes, and immunoaffinity chromatography. The book provides easy-to-follow, well-tested protocols to allow the uninitiated to use these techniques to the maximum advantage with minimum hassle. In addition, it shows researchers how to save money by making their own optimized affinity supports. Matrix activation: Ligand immobilization, Binding and elution of target molecules, Enzyme catalysis on solid supports, Analytical affinity chromatography, Isolation/purification of antibodies, Preparation of antibody fragments, Immunoaffinity chromatography, Immobilization of nucleic acids, Use of immobilized ligands for removal of trace contaminants Practical advice on choosing: Matrices, Spacers, Methods of activation and coupling Background information and insights on: Affinity interactions, The ease and power of affinity chromatography, Attaching molecules to insoluble supports, Matrices currently in use, Over 20 methods of activation, Spacers, Extensive References
Immobilized Microbial Cells, Volume 4 provides an overview of the methods of immobilization, applications, and ways of utilizing immobilized microbial cells and subcellular organelles and chloroplasts as biocatalysts. This volume is comprised of seven chapters. It begins with the historical background of immobilized cell research. Subsequent chapters focus on the methods of immobilization and applications of immobilized microbial cells, living cells, and organelles. The last two chapters discuss gas production of immobilized cells for energy generation and the chemical engineering analysis of immobilized-cell systems. The book will be of great use to chemists and chemical engineers.
Enzyme biocatalysis is a fast-growing area in process biotechnology that has expanded from the traditional fields of foods, detergents, and leather applications to more sophisticated uses in the pharmaceutical and fine-chemicals sectors and environmental management. Conventional applications of industrial enzymes are expected to grow, with major opportunities in the detergent and animal feed sectors, and new uses in biofuel production and human and animal therapy. In order to design more efficient enzyme reactors and evaluate performance properly, sound mathematical expressions must be developed which consider enzyme kinetics, material balances, and eventual mass transfer limitations. With a focus on problem solving, each chapter provides abridged coverage of the subject, followed by a number of solved problems illustrating resolution procedures and the main concepts underlying them, plus supplementary questions and answers. Based on more than 50 years of teaching experience, Problem Solving in Enzyme Biocatalysis is a unique reference for students of chemical and biochemical engineering, as well as biochemists and chemists dealing with bioprocesses. Contains: Enzyme properties and applications; enzyme kinetics; enzyme reactor design and operation 146 worked problems and solutions in enzyme biocatalysis.
Nanobiosensors for Bio-molecular Targeting presents the latest analytical methods for the detection of different substances in the range of small molecules to whole cells, exploring the advantages and disadvantages of each method. Biosensors combine the component of biological origin and physicochemical detector to show the presence of analytes in a given sample. The use of bionanotechnology has led to a significant advancement in the progression of nanobiosensors and has been effectively used for biomedical diagnosis.
Nanotechnology and Biosensors shows how nanotechnology is used to create affordable, mass-produced, portable, small sized biosensors to directly monitor environmental pollutants. In addition, it provides information on their integration into components and systems for mass market applications in food analysis, environmental monitoring and health diagnostics. Nanotechnology has led to a dramatic improvement in the performance, sensitivity and selectivity of biosensors. As metal-oxide and carbon nanostructures, gold and magnetite nanoparticles, and the integration of dendrimers in biosensors using nanotechnology have contributed greatly in making biosensors more effective and affordable on a mass-market level, this book presents a timely resource on the topic. - Highlights nanotechnology-based approaches to the detection of enzyme inhibitors, direct enzymatic and microbial detection of metabolites, and nutrients using biosensors - Includes examples on how nanotechnology has lead to improvements in the construction of portable, selective and sensitive biosensing devices - Offers thorough coverage of biomarker/biosensor interaction for the rapid detection of toxicants and pollutants