Download Free Use Of Yeast Biomass In Food Production Book in PDF and EPUB Free Download. You can read online Use Of Yeast Biomass In Food Production and write the review.

Yeast biomass is an excellent source of proteins, nucleic acids, and vitamins. It has been produced and consumed in baked goods and other foods for thousands of years and offers significant advantages when compared to other potential new microbial protein sources. Use of Yeast Biomass in Food Production provides up-to-date information regarding the chemical composition and biochemistry of yeasts, discusses the biotechnological basis of yeast production and possibilities for influencing yeast biomass composition using new techniques in molecular biology. The book examines techniques for producing yeast protein concentrates (and isolates) while still retaining their functional properties and nutritive values, as well as the various uses for these materials and their derivatives in different branches of the food industry. Finally, the book explores possibilities for the production and industrial use of other yeast components, such as nucleic acids, nucleotides, cell wall polysaccharides, autolysates, and extracts. Food microbiologists and technologists, as well as biotechnologists, will discover that this book is an invaluable reference resource.
Yeast biomass is an excellent source of proteins, nucleic acids, and vitamins. It has been produced and consumed in baked goods and other foods for thousands of years and offers significant advantages when compared to other potential new microbial protein sources. Use of Yeast Biomass in Food Production provides up-to-date information regarding the chemical composition and biochemistry of yeasts, discusses the biotechnological basis of yeast production and possibilities for influencing yeast biomass composition using new techniques in molecular biology. The book examines techniques for producing yeast protein concentrates (and isolates) while still retaining their functional properties and nutritive values, as well as the various uses for these materials and their derivatives in different branches of the food industry. Finally, the book explores possibilities for the production and industrial use of other yeast components, such as nucleic acids, nucleotides, cell wall polysaccharides, autolysates, and extracts. Food microbiologists and technologists, as well as biotechnologists, will discover that this book is an invaluable reference resource.
Yeast - Industrial Applications is a book that covers applications and utilities of yeasts in food, chemical, energy, and environmental industries collected in 12 chapters. The use of yeasts in the production of metabolites, enzymatic applications, fermented foods, microorganism controls, bioethanol production, and bioremediation of contaminated environments is covered showing results, methodologies, and processes and describing the specific role of yeasts in them. The traditional yeast Saccharomyces cerevisiae is complemented in many applications with the use of less known non-Saccharomyces yeasts that now are being used extensively in industry. This book compiles the experience and know-how of researchers and professors from international universities and research centers.
With the advances in the field of molecular biology, new tools make it possible to conduct in-depth studies in food microbial communities from a molecular perspective. Information from genomic, transcriptomic, proteomic and metabolomic studies can be integrated through bioinformatic applications, thereby improving our understanding of the interactions between biotic and abiotic factors and concomitantly the physiology of starter cultures, spoilage and pathogenic microbiota. Improvements in the speed, accuracy and reliability of food quality and safety assessment have made the foundation stronger for future developments including the exploitation of gene networks and applications of nanotechnology and systems biology. This book reviews all these developments, provides an integrated view of the subject and helps in identifying areas of future development.
This volume scopes several aspects of non-conventional yeast research prepared by the leading specialists in the field. An introduction on taxonomy and systematics enhances the reader’s knowledge on yeasts beyond established ones such as Saccharomyces cerevisiae. Biotechnological approaches that involve fungal utilization of unusual substrates, production of biofuels and useful chemicals as citric acid, glutathione or erythritol are discussed. Further, strategies for metabolic engineering based on knowledge on regulation of gene expression as well as sensing and signaling pathways are presented. The book targets researchers and advanced students working in Microbiology, Microbial Biotechnology and Biochemistry.
As a group of microorganisms, yeasts have an enormous impact on food and bev- age production. Scientific and technological understanding of their roles in this p- duction began to emerge in the mid-1800s, starting with the pioneering studies of Pasteur in France and Hansen in Denmark on the microbiology of beer and wine fermentations. Since that time, researchers throughout the world have been engaged in a fascinating journey of discovery and development – learning about the great diversity of food and beverage commodities that are produced or impacted by yeast activity, about the diversity of yeast species associated with these activities, and about the diversity of biochemical, physiological and molecular mechanisms that underpin the many roles of yeasts in food and beverage production. Many excellent books have now been published on yeasts in food and beverage production, and it is reasonable to ask the question – why another book? There are two different approaches to describe and understand the role of yeasts in food and beverage production. One approach is to focus on the commodity and the technology of its processing (e. g. wine fermentation, fermentation of bakery products), and this is the direction that most books on food and beverage yeasts have taken, to date. A second approach is to focus on the yeasts, themselves, and their bi- ogy in the context of food and beverage habitats.
Contributions from 80 world-renowned authorities representing a broad international background lend Fungal Biotechnology in Agricultural, Food, and Environmental Applicationsfirst-class information on the biotechnological potential of entomopathogenic fungi and ergot alkaloids, applications of Trichoderma in disease control, and the d
Fundamentals of Food Biotechnology Food biotechnology is the application of modern biotechnological techniques to the manufacture and processing of food; for example, through fermentation of food (which is the oldest biotechnological process) and food additives, as well as plant and animal cell cultures. New developments in fermentation and enzyme technological processes, molecular thermodynamics, genetic engineering, protein engineering, metabolic engineering, bioengineering, and processes involving monoclonal antibodies, nanobiotechnology and quorum sensing have introduced exciting new dimensions to food biotechnology, a burgeoning field that transcends many scientific disciplines. Fundamentals of Food Biotechnology, 2nd edition is based on the author’s 25 years of experience in teaching on a food biotechnology course at McGill University in Canada. The book will appeal to professional food scientists as well as graduate and advanced undergraduate students by addressing the latest exciting food biotechnology research in areas such as genetically modified foods (GMOs), bioenergy, bioplastics, functional foods/ nutraceuticals, nanobiotechnology, quorum sensing and quenching. In addition, cloning techniques for bacterial and yeast enzymes are included in a “New Trends and Tools” section and selected references, questions, and answers appear at the end of each chapter. This new edition has been comprehensively rewritten and restructured to reflect the new technologies, products, and trends that have emerged since the original book. Many new aspects highlight the short- and longer-term commercial potential of food biotechnology. Food Biochemistry and Food Processing, 2nd Edition Edited by Benjamin K. Simpson, Leo M.L. Nollet, Fidel Toldra, et al. ISBN 978-0-8138-0874-1 Food Processing: Principles and Applications, 2nd Edition Edited by Stephanie Clark (Editor), Stephanie Jung, Buddhi Lamsal ISBN 978-0-470-67114-6
Numerous foods are prepared by fermentation processes in which one or more kinds of microorganisms are responsible for the characteristic flavour or texture, and sometimes for the keeping quality of the product. The manufacture of fermented food products is carried out on a small scale in homes in every country. Fermented products are more palatable and are not as easily spoiled as the natural products. The microorganisms that produce the desirable changes may be the natural flora on the material to be fermented, or may be added as starter cultures. The yield of organic acids principally lactic, serve as a preserving agents. Lactic acid fermentation is an anaerobic intramolecular oxidation reduction process. Both homofermentative and heterofermentative lactic acid bacteria participate in food fermentations. In some fermented food products, yeasts and moulds also participate along with lactic acid bacteria. Most of the reactions in living organisms are catalyzed by protein molecules called enzymes. Enzymes can rightly be called the catalytic machinery of living systems. The real break through of enzymes occurred with the introduction of microbial proteases into detergents. Most of the enzymes are produced by microorganisms in submerged cultures in large reactors called fermentors. In choosing the production strain several aspects have to be considered. Industrial enzyme market is growing steadily. The reason for this lies in improved production efficiency resulting in cheaper enzymes, in new application fields. Tailoring enzymes for specific applications will be a future trend with continuously improving tools and understanding of structure-function relationships and increased search for enzymes from exotic environments. This field deals with how are the enzymes used and applied in practical processes. A lot of fungal, bacterial and actinomycete strains with potential for producing novel industrial enzymes have been identified. This book contains sterilization, fermentation processes, aeration and agitation, use of yeast, yeast production, fermentation raw materials, production of bacterial enzymes, bread making methods, effluent treatment, production of actinomycete protease, lactic acid, citric acid. This handbook will be very helpful to its readers who are just beginners in this field and will also find useful for upcoming entrepreneurs, existing industries, food technologist, technical institution etc.