Download Free Urban Area Traffic Flow Forecasting In Intelligent Transportation Systems Book in PDF and EPUB Free Download. You can read online Urban Area Traffic Flow Forecasting In Intelligent Transportation Systems and write the review.

Intelligent Transportation Systems (ITS) have transformed surface transportation networks through the integration of advanced communications and computing technologies into the transportation infrastructure. ITS technologies have improved the safety and mobility of the transportation network through advanced applications such as electronic toll collection, in-vehicle navigation systems, collision avoidance systems, and advanced traffic management systems, and advanced traveler information systems. In this book that focuses on different ITS technologies and applications, authors from several countries have contributed chapters covering different ITS technologies, applications, and management practices with the expectation that the open exchange of scientific results and ideas presented in this book will lead to improved understanding of ITS technologies and their applications.
The book emphasizes the predictive models of Big Data, Genetic Algorithm, and IoT with a case study. The book illustrates the predictive models with integrated fuel consumption models for smart and safe traveling. The text is a coordinated amalgamation of research contributions and industrial applications in the field of Intelligent Transportation Systems. The advanced predictive models and research results were achieved with the case studies, deployed in real transportation environments. Features: Provides a smart traffic congestion avoidance system with an integrated fuel consumption model. Predicts traffic in short-term and regular. This is illustrated with a case study. Efficient Traffic light controller and deviation system in accordance with the traffic scenario. IoT based Intelligent Transport Systems in a Global perspective. Intelligent Traffic Light Control System and Ambulance Control System. Provides a predictive framework that can handle the traffic on abnormal days, such as weekends, festival holidays. Bunch of solutions and ideas for smart traffic development in smart cities. This book focuses on advanced predictive models along with offering an efficient solution for smart traffic management system. This book will give a brief idea of the available algorithms/techniques of big data, IoT, and genetic algorithm and guides in developing a solution for smart city applications. This book will be a complete framework for ITS domain with the advanced concepts of Big Data Analytics, Genetic Algorithm and IoT. This book is primarily aimed at IT professionals. Undergraduates, graduates and researchers in the area of computer science and information technology will also find this book useful.
Building around innovative services related to different modes of transport and traffic management, intelligent transport systems (ITS) are being widely adopted worldwide to improve the efficiency and safety of the transportation system. They enable users to be better informed and make safer, more coordinated, and smarter decisions on the use of transport networks. Current ITSs are complex systems, made up of several components/sub-systems characterized by time-dependent interactions among themselves. Some examples of these transportation-related complex systems include: road traffic sensors, autonomous/automated cars, smart cities, smart sensors, virtual sensors, traffic control systems, smart roads, logistics systems, smart mobility systems, and many others that are emerging from niche areas. The efficient operation of these complex systems requires: i) efficient solutions to the issues of sensors/actuators used to capture and control the physical parameters of these systems, as well as the quality of data collected from these systems; ii) tackling complexities using simulations and analytical modelling techniques; and iii) applying optimization techniques to improve the performance of these systems.
Theoretical results suggest that in order to learn the kind of complicated functions that can represent high-level abstractions (e.g. in vision, language, and other AI-level tasks), one may need deep architectures. Deep architectures are composed of multiple levels of non-linear operations, such as in neural nets with many hidden layers or in complicated propositional formulae re-using many sub-formulae. Searching the parameter space of deep architectures is a difficult task, but learning algorithms such as those for Deep Belief Networks have recently been proposed to tackle this problem with notable success, beating the state-of-the-art in certain areas. This paper discusses the motivations and principles regarding learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer models such as Restricted Boltzmann Machines, used to construct deeper models such as Deep Belief Networks.
Artificial neural networks are used to model systems that receive inputs and produce outputs. The relationships between the inputs and outputs and the representation parameters are critical issues in the design of related engineering systems, and sensitivity analysis concerns methods for analyzing these relationships. Perturbations of neural networks are caused by machine imprecision, and they can be simulated by embedding disturbances in the original inputs or connection weights, allowing us to study the characteristics of a function under small perturbations of its parameters. This is the first book to present a systematic description of sensitivity analysis methods for artificial neural networks. It covers sensitivity analysis of multilayer perceptron neural networks and radial basis function neural networks, two widely used models in the machine learning field. The authors examine the applications of such analysis in tasks such as feature selection, sample reduction, and network optimization. The book will be useful for engineers applying neural network sensitivity analysis to solve practical problems, and for researchers interested in foundational problems in neural networks.
With the advent and development of AI and other new technologies, traffic and transportation have changed enormously in recent years, and the need for more environmentally-friendly solutions is also driving innovation in these fields. This book presents the proceedings of ICITT 2023, the 7th International Conference on Intelligent Traffic and Transportation, held from 18-20 September 2023 in Madrid, Spain. This annual conference is becoming one of the leading international conferences for presenting novel and fundamental advances in the fields of intelligent traffic and transportation. It also serves to foster communication among researchers and practitioners working in a wide variety of scientific areas with a common interest in intelligent traffic and transportation and related techniques. ICITT welcomes scholars and researchers from all over the world to share experiences and lessons with other enthusiasts, and develop opportunities for cooperation. The 27 papers included here represent an acceptance rate of 64% of submissions received, and were selected following a rigorous review process. Topics covered include autonomous technology; industrial automation; artificial intelligence; machine, deep and cognitive learning; distributed networking; transportation in future smart cities; hybrid vehicle technology; mobility; cyber-physical systems; design and cost engineering; enterprise information management; product design; intelligent automation; ICT-enabled collaborative global manufacturing; knowledge management; product-service systems; optimization; product lifecycle management; sustainable systems; machine vision; Industry 4.0; and navigation systems. Offering an overview of recent research and current practice, the book will be of interest to all those working in the field.
Ongoing advancements in modern technology have led to significant developments in intelligent systems. With the numerous applications available, it becomes imperative to conduct research and make further progress in this field. Intelligent Systems: Concepts, Methodologies, Tools, and Applications contains a compendium of the latest academic material on the latest breakthroughs and recent progress in intelligent systems. Including innovative studies on information retrieval, artificial intelligence, and software engineering, this multi-volume book is an ideal source for researchers, professionals, academics, upper-level students, and practitioners interested in emerging perspectives in the field of intelligent systems.
This book presents a discussion of problems encountered in the deployment of Intelligent Transport Systems (ITS). It puts emphasis on the early tasks of designing and proofing the concept of integration of technologies in Intelligent Transport Systems. In its first part the book concentrates on the design problems of urban ITS. The second part of the book features case studies representative for the different modes of transport. These are freight transport, rail transport and aerospace transport encompassing also space stations. The book provides ideas for deployment which may be developed by scientists and engineers engaged in the design of Intelligent Transport Systems. It can also be used in the training of specialists, students and post-graduate students in universities and transport high schools.
Intelligent Vehicular Network and Communications: Fundamentals, Architectures and Solutions begins with discussions on how the transportation system has transformed into today's Intelligent Transportation System (ITS). It explores the design goals, challenges, and frameworks for modeling an ITS network, discussing vehicular network model technologies, mobility management architectures, and routing mechanisms and protocols. It looks at the Internet of Vehicles, the vehicular cloud, and vehicular network security and privacy issues. The book investigates cooperative vehicular systems, a promising solution for addressing current and future traffic safety needs, also exploring cooperative cognitive intelligence, with special attention to spectral efficiency, spectral scarcity, and high mobility. In addition, users will find a thorough examination of experimental work in such areas as Controller Area Network protocol and working function of On Board Unit, as well as working principles of roadside unit and other infrastructural nodes. Finally, the book examines big data in vehicular networks, exploring various business models, application scenarios, and real-time analytics, concluding with a look at autonomous vehicles. - Proposes cooperative, cognitive, intelligent vehicular networks - Examines how intelligent transportation systems make more efficient transportation in urban environments - Outlines next generation vehicular networks technology