Download Free Uranium And Plant Metabolism Book in PDF and EPUB Free Download. You can read online Uranium And Plant Metabolism and write the review.

This book explores the uranium uptake by plants and its impact on plant physiology and biochemistry. In the first part of this work, the author summarizes the chemistry of uranium, its use and its environmental distribution. Then, particular attention is given to the methods for uranium detection, and to the plant biochemical reactions that influence the uranium uptake. Readers will also discover several strategies adopted by cells to immobilize and handle uranium.
This book describes hazards from radon progeny and other alpha-emitters that humans may inhale or ingest from their environment. In their analysis, the authors summarize in one document clinical and epidemiological evidence, the results of animal studies, research on alpha-particle damage at the cellular level, metabolic pathways for internal alpha-emitters, dosimetry and microdosimetry of radionuclides deposited in specific tissues, and the chemical toxicity of some low-specific-activity alpha-emitters. Techniques for estimating the risks to humans posed by radon and other internally deposited alpha-emitters are offered, along with a discussion of formulas, models, methods, and the level of uncertainty inherent in the risk estimates.
Mitochondria are sometimes called the powerhouses of eukaryotic cells, because mitochondria are the site of ATP synthesis in the cell. ATP is the universal energy currency, it provides the power that runs all other life processes. Humans need oxygen to survive because of ATP synthesis in mitochondria. The sugars from our diet are converted to carbon dioxide in mitochondria in a process that requires oxygen. Just like a fire needs oxygen to burn, our mitochondria need oxygen to make ATP. From textbooks and popular literature one can easily get the impression that all mitochondria require oxygen. But that is not the case. There are many groups of organismsm known that make ATP in mitochondria without the help of oxygen. They have preserved biochemical relicts from the early evolution of eukaryotic cells, which took place during times in Earth history when there was hardly any oxygen avaiable, certainly not enough to breathe. How the anaerobic forms of mitochondria work, in which organisms they occur, and how the eukaryotic anaerobes that possess them fit into the larger picture of rising atmospheric oxygen during Earth history are the topic of this book.
This book explores the uranium uptake by plants and its impact on plant physiology and biochemistry. In the first part of this work, the author summarizes the chemistry of uranium, its use and its environmental distribution. Then, particular attention is given to the methods for uranium detection, and to the plant biochemical reactions that influence the uranium uptake. Readers will also discover several strategies adopted by cells to immobilize and handle uranium.
The decay product of the medical isotope molybdenum-99 (Mo-99), technetium-99m (Tc-99m), and associated medical isotopes iodine-131 (I-131) and xenon-133 (Xe-133) are used worldwide for medical diagnostic imaging or therapy. The United States consumes about half of the world's supply of Mo-99, but there has been no domestic (i.e., U.S.-based) production of this isotope since the late 1980s. The United States imports Mo-99 for domestic use from Australia, Canada, Europe, and South Africa. Mo-99 and Tc-99m cannot be stockpiled for use because of their short half-lives. Consequently, they must be routinely produced and delivered to medical imaging centers. Almost all Mo-99 for medical use is produced by irradiating highly enriched uranium (HEU) targets in research reactors, several of which are over 50 years old and are approaching the end of their operating lives. Unanticipated and extended shutdowns of some of these old reactors have resulted in severe Mo-99 supply shortages in the United States and other countries. Some of these shortages have disrupted the delivery of medical care. Molybdenum-99 for Medical Imaging examines the production and utilization of Mo-99 and associated medical isotopes, and provides recommendations for medical use.
This report assesses the levels and effects of exposure to ionizing radiation. Scientific findings underpin radiation risk evaluation and international protection standards. This report comprises a report with two underpinning scientific annexes. The first annex recapitulates and clarifies the philosophy of science as well as the scientific knowledge for attributing observed health effects in individuals and populations to radiation exposure, and distinguishes between that and inferring risk to individuals and populations from an exposure. The second annex reviews the latest thinking and approaches to quantifying the uncertainties in assessments of risk from radiation exposure, and illustrates these approaches with application to examples that are highly pertinent to radiation protection.
This book presents the results from the Uranium Mining and Hydrogeology Congress held in September 2005, in Freiberg, Germany. It addresses scientists and engineers involved in the areas of uranium mining and milling sites, clean-up measures, emissions of nuclear power plants and radioactive waste disposal, as well as political decision-makers. The topics covered are: impact on groundwater from radionuclide emission, analytical specification techniques, chemical toxicity, radioisotope plant uptake, microbiology, geochemical and reactive transport, case studies on active and abandoned uranium mines and milling sites, long-term storage of radioactive waste, passive in situ treatment techniques and risk assessment studies. The accompanying CD-ROM includes all papers in colour.