Download Free Uplift Capacity Of Rigid Vertical Piles In Clay Under Inclined Pull Book in PDF and EPUB Free Download. You can read online Uplift Capacity Of Rigid Vertical Piles In Clay Under Inclined Pull and write the review.

Anchors are primarily used in the construction of foundations of earth-supported and earth-retaining structures. The anchors are used in construction to transmit the outwardly-directed load to soil at a greater depth and/or farther from the structure. Although earth anchors have been used in practice for several hundred years, proper theoretical developments for purposes of modern engineering design have taken place only during the past twenty years or so. This book summarizes most of the theoretical and experimental works directed toward the ultimate and allowable holding capacity of earth anchors. The book contains six chapters with detailed discussions on horizontal, vertical and inclined anchor plates, helical anchors, and anchor piles. Discussions on the failure mechanism in soil located around the anchor, as well as various theories to calculate the ultimate and allowable loads, are presented. Laboratory and field test results which are required to supplement and verify the theories have also been included. This book is of interest to consulting engineers in geotechnical engineering, as well as geotechnical engineering researchers and engineering libraries.
Anchors are primarily used in the construction of foundations of earth-supported and earth-retaining structures. The fundamental reason for using earth anchors in construction is to transmit the outwardly directed load to the soil at a greater depth and/or farther away from the structure. Although earth anchors have been used in practice for several hundred years, proper theoretical developments for purposes of modern engineering designs have taken place only during the past 40 to 45 years. This book summarizes most theoretical and experimental works directed toward the development of proper relationships for ultimate and allowable holding capacity of earth anchors. J. Ross Publishing offers a supplemental download — A customizable PowerPoint instructional slide presentation prepared by the authors that complements the material covered in the book, chapter-by-chapter.
This encyclopedia adopts a wider definition for the concept of ocean engineering. Specifically, it includes (1) offshore engineering: fixed and floating offshore oil and gas platforms; pipelines and risers; cables and moorings; buoy technology; foundation engineering; ocean mining; marine and offshore renewable energy; aquaculture engineering; and subsea engineering; (2) naval architecture: ship and special marine vehicle design; intact and damaged stability; technology for energy efficiency and green shipping; ship production technology; decommissioning and recycling; (3) polar and Arctic Engineering: ice mechanics; ice-structure interaction; polar operations; polar design; environmental protection; (4) underwater technologies: AUV/ROV design; AUV/ROV hydrodynamics; maneuvering and control; and underwater-specific communicating and sensing systems for AUV/ROVs. It summarizes the A–Z of the background and application knowledge of ocean engineering for use by ocean scientists and ocean engineers as well as nonspecialists such as engineers and scientists from all disciplines, economists, students, and politicians. Ocean engineering theories, ocean devices and equipment, ocean design and operation technologies are described by international experts, many from industry and each entry offers an introduction and references for further study, making current technology and operating practices available for future generations to learn from. The book also furthers our understanding of the current state of the art, leading to new and more efficient technologies with breakthroughs from new theory and materials. As the land resources approach the exploitation limit, ocean resources are becoming the next choice for the sustainable development. As such, ocean engineering is vital in the 21st century.
Assessing the service status and maintaining the safety of existing structures are critical to the sustainable operations of various engineering and cross-industry, including civil infrastructures, railways and machinery. Static and dynamic structural characteristics play a key role in the global deterioration assessment of the structural performance, which has enabled structural monitoring and analysis technology to become an active focus in the engineering area. Meanwhile, structural control has been widely used in modern structural engineering. Structural control devices are implemented to enhance deteriorating structures and mitigate natural disasters. Through advanced structural control technology, the structural responses can be controlled. These structural control techniques include passive, active or semi-active reverse forces, which aim to modify structural stiffness, mass and damping with minimal control force. Structural control, monitoring and analysis complement each other, ensuring the safety of the structure to the greatest extent.