Download Free Upgrading Petroleum Residues And Heavy Oils Book in PDF and EPUB Free Download. You can read online Upgrading Petroleum Residues And Heavy Oils and write the review.

"This useful reference offers in-depth coverage of current techniques for converting heavy oils and residues into more valuable distillates.Examines the chemistry of heavy hydrocarbon feeds and their properties important to engineering design, including phase behavior, reaction kinetics, and thermodynamic and transport characteristics!"
Heavy Oil Recovery and Upgrading covers properties, factors, methods and all current and upcoming processes, giving engineers, new and experienced, the full spectrum of recovery choices, including SAGD, horizontal well technology, and hybrid approaches. Moving on to the upgrading and refining of the product, the book also includes information on in situ upgrading, refining options, and hydrogen production. Rounding out with environmental effects, management methods on refinery waste, and the possible future configurations within the refinery, this book provides engineers with a single source to make decisions and manage the full range of challenges. Presents the properties, mechanisms, screening criteria and field applications for heavy oil enhanced recovery projects Includes current upgrading options and future methods for refining heavy oil development Fills in the gaps between literature and practical application for everyday industry reference
With the increasing demand of petroleum-derived products due to the world population and development, upgrading of crude oil with heavier quality and petroleum residues is unavoidable. Hydroprocessing is a preferable process for heavy oil upgrading. The process is operated with the presence of a catalyst, and catalysis plays an important role in the process. An overview regarding the catalyst design such as the catalyst active metal, active phase, support properties, and catalyst structure for heavy oil hydroprocessing is provided. There also include some recent advancements related to catalytic hydroprocessing of heavy oils and residue processes. Further catalyst performance improvement will likely come from catalyst optimization and better catalyst deactivation resistance resulting from metal poisoning and coke formation.
"Second Edition expands and updates information on the technological aspects of refining heavy oils, residua, bitumen, and other high-sulfur feedstocks. Focuses on the range of next-generation refining processes."
State-of-the-art oilsands processing technologies, from laboratory to full commercial scale.
Fundamentals of Petroleum Refining presents the fundamentals of thermodynamics and kinetics, and it explains the scientific background essential for understanding refinery operations. The text also provides a detailed introduction to refinery engineering topics, ranging from the basic principles and unit operations to overall refinery economics. The book covers important topics, such as clean fuels, gasification, biofuels, and environmental impact of refining, which are not commonly discussed in most refinery textbooks. Throughout the source, problem sets and examples are given to help the reader practice and apply the fundamental principles of refining. Chapters 1-10 can be used as core materials for teaching undergraduate courses. The first two chapters present an introduction to the petroleum refining industry and then focus on feedstocks and products. Thermophysical properties of crude oils and petroleum fractions, including processes of atmospheric and vacuum distillations, are discussed in Chapters 3 and 4. Conversion processes, product blending, and alkylation are covered in chapters 5-10. The remaining chapters discuss hydrogen production, clean fuel production, refining economics and safety, acid gas treatment and removal, and methods for environmental and effluent treatments. This source can serve both professionals and students (on undergraduate and graduate levels) of Chemical and Petroleum Engineering, Chemistry, and Chemical Technology. Beginners in the engineering field, specifically in the oil and gas industry, may also find this book invaluable. Provides balanced coverage of fundamental and operational topics Includes spreadsheets and process simulators for showing trends and simulation case studies Relates processing to planning and management to give an integrated picture of refining
The book provides the most up-to-date information on testing and development of hydroprocessing catalysts with the aim to improve performance of the conventional and modified catalysts as well as to develop novel catalytic formulations. Besides diverse chemical composition, special attention is devoted to pore size and pore volume distribution of the catalysts. Properties of the catalysts are discussed in terms of their suitability for upgrading heavy feeds. For this purpose atmospheric residue was chosen as the base for defining other heavy feeds which comprise vacuum gas oil, deasphalted oil and vacuum residues in addition to topped heavy crude and bitumen. Attention is paid to deactivation with the aim to extent catalyst life during the operation. Into consideration is taken the loss of activity due to fouling, metal deposition, coke formed as the result of chemical reaction and poisoning by nitrogen bases. Mathematical models were reviewed focussing on those which can simulate performance of the commercial operations. Configurations of hydroprocessing reactors were compared in terms of their capability to upgrade various heavy feeds providing that a suitable catalyst was selected. Strategies for regeneration, utilization and disposal of spent hydroprocesing catalysts were evaluated. Potential of the non-conventional hydroprocessing involving soluble/dispersed catalysts and biocatalysts in comparison with conventional methods were assessed to identify issues which prevent commercial utilization of the former. A separate chapter is devoted to catalytic dewaxing because the structure of dewaxing catalysts is rather different than that of hydroprocessing catalysts, i.e., the objective of catalytic dewaxing is different than that of the conventional hydroprocessing, The relevant information in the scientific literature is complemented with the Patent literature covering the development of catalysts and novel reactor configurations.Separate chapter was added to distinguish upgrading capabilities of the residues catalytic cracking processes from those employing hydroprocessing. Upper limits on the content of carbon residue and metals in the feeds which can still be upgraded by the former processes differ markedly from those in the feeds which can be upgraded by hydroprocessing. It is necessary that the costs of modifications of catalytic cracking processes to accommodate heavier feeds are compared with that of hydroprocessing methods.Objective of the short chapter on upgrading by carbon rejecting processes was to identify limits of contaminants in heavy feeds beyond which catalytic upgrading via hydroprocessing becomes uneconomical because of the costs of catalyst inventory and that of reactors and equipment. - Comprehensive and most recent information on hydroprocessing catalysts for upgrading heavy petroleum feeds.- Compares conventional, modified and novel catalysts for upgrading a wide range of heavy petroleum feeds.- Comparison of conventional with non-conventional hydroprocessing, the latter involving soluble/dispersed catalysts and biocatalysts. - Development and comparison of mathematical models to simulate performance of catalytic reactors including most problematic feeds.- Residues upgrading by catalytic cracking in comparison to hydroprocessing.
Heavy crude oils and bitumen represent more than 50% of all hydrocarbons available on the planet. These feedstocks have a low amount of distillable material and high level of contaminants that make their production, transportation, and refining difficult and costly by conventional technologies. Subsurface Upgrading of Heavy Crude Oils and Bitumen is of interest to the petroleum industry mainly because of the advantages compared to aboveground counterparts. The author presents an in-depth account and a critical review of the progress of industry and academia in underground or In-Situ upgrading of heavy, extra-heavy oils and bitumen, as reported in the patent and open literature. This work is aimed to be a standalone monograph, so three chapters are dedicated to the composition of petroleum and fundamentals of crude oil production and refining. Key Features: Offers a multidisciplinary scope that will appeal to chemists, geologists, biologists, chemical engineers, and petroleum engineers Presents the advantages and disadvantages of the technologies considered Discusses economic and environmental considerations for all the routes evaluated and offers perspectives from experts in the field working with highlighted technologies