Download Free Unveiling Active Faults Multiscale Perspectives And Alternative Approaches Addressing The Seismic Hazard Challenge Book in PDF and EPUB Free Download. You can read online Unveiling Active Faults Multiscale Perspectives And Alternative Approaches Addressing The Seismic Hazard Challenge and write the review.

Measuring Vulnerability to Natural Hazards presents a broad range of current approaches to measuring vulnerability. It provides a comprehensive overview of different concepts at the global, regional, national, and local levels, and explores various schools of thought. More than 40 distinguished academics and practitioners analyse quantitative and qualitative approaches, and examine their strengths and limitations. This book contains concrete experiences and examples from Africa, Asia, the Americas and Europe to illustrate the theoretical analyses.The authors provide answers to some of the key questions on how to measure vulnerability and they draw attention to issues with insufficient coverage, such as the environmental and institutional dimensions of vulnerability and methods to combine different methodologies.This book is a unique compilation of state-of-the-art vulnerability assessment and is essential reading for academics, students, policy makers, practitioners, and anybody else interested in understanding the fundamentals of measuring vulnerability. It is a critical review that provides important conclusions which can serve as an orientation for future research towards more disaster resilient communities.
Satellite images acquired at night provide a visually arresting perspective of the Earth and the human activities that light up the otherwise mostly dark Earth. These night-time light satellite images can be compiled into a geospatial time series that represent an invaluable source of information for both the natural and social sciences. Night-time light remote sensing has been shown to be particularly useful for a range of natural science and social science applications, including studies relating to urban development, demography, sociology, fishing activity, light pollution and the consequences of civil war. Key sensors for these time-series include the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP/OLS) and the Suomi National Polar-orbiting Partnership Satellite’s Visible Infrared Imaging Radiometer Suite Day/Night Band (Suomi NPP/VIIRS DNB). An increasing number of alternative sources are also available, including high spatial resolution and multispectral sensors. This book captures key methodological issues associated with pre-processing night-time light data, documents state of the art analysis methods, and explores a wide range of applications. Major sections focus on NPP/VIIRS DNB processing; inter-calibration between NPP/VIIRS and DMPS/OLS; applications associated with socio-economic activities, applications in monitoring urbanization; and fishing activity monitoring. The chapters in this book were originally published as a special issue of the International Journal of Remote Sensing.
Due to an ever-decreasing supply in raw materials and stringent constraints on conventional energy sources, demand for lightweight, efficient and low cost structures has become crucially important in modern engineering design. This requires engineers to search for optimal and robust design options to address design problems that are often large in scale and highly nonlinear, making finding solutions challenging. In the past two decades, metaheuristic algorithms have shown promising power, efficiency and versatility in solving these difficult optimization problems. This book examines the latest developments of metaheuristics and their applications in water, geotechnical and transport engineering offering practical case studies as examples to demonstrate real world applications. Topics cover a range of areas within engineering, including reviews of optimization algorithms, artificial intelligence, cuckoo search, genetic programming, neural networks, multivariate adaptive regression, swarm intelligence, genetic algorithms, ant colony optimization, evolutionary multiobjective optimization with diverse applications in engineering such as behavior of materials, geotechnical design, flood control, water distribution and signal networks. This book can serve as a supplementary text for design courses and computation in engineering as well as a reference for researchers and engineers in metaheursitics, optimization in civil engineering and computational intelligence. Provides detailed descriptions of all major metaheuristic algorithms with a focus on practical implementation Develops new hybrid and advanced methods suitable for civil engineering problems at all levels Appropriate for researchers and advanced students to help to develop their work
This synthesis summarizes the findings of the Global Natural Disaster Risk Hotspots project. The Hotspots project generated a global disaster risk assessment and a set of more localized or hazard-specific case studies. The synthesis draws primarily from the results of the global assessment. Full details on the data, methods and results of the global analysis can be found in volume one of Natural Disaster Hotspots: A Global Risk Analysis. The case studies are contained in volume two (forthcoming).
The United States will certainly be subject to damaging earthquakes in the future. Some of these earthquakes will occur in highly populated and vulnerable areas. Coping with moderate earthquakes is not a reliable indicator of preparedness for a major earthquake in a populated area. The recent, disastrous, magnitude-9 earthquake that struck northern Japan demonstrates the threat that earthquakes pose. Moreover, the cascading nature of impacts-the earthquake causing a tsunami, cutting electrical power supplies, and stopping the pumps needed to cool nuclear reactors-demonstrates the potential complexity of an earthquake disaster. Such compound disasters can strike any earthquake-prone populated area. National Earthquake Resilience presents a roadmap for increasing our national resilience to earthquakes. The National Earthquake Hazards Reduction Program (NEHRP) is the multi-agency program mandated by Congress to undertake activities to reduce the effects of future earthquakes in the United States. The National Institute of Standards and Technology (NIST)-the lead NEHRP agency-commissioned the National Research Council (NRC) to develop a roadmap for earthquake hazard and risk reduction in the United States that would be based on the goals and objectives for achieving national earthquake resilience described in the 2008 NEHRP Strategic Plan. National Earthquake Resilience does this by assessing the activities and costs that would be required for the nation to achieve earthquake resilience in 20 years. National Earthquake Resilience interprets resilience broadly to incorporate engineering/science (physical), social/economic (behavioral), and institutional (governing) dimensions. Resilience encompasses both pre-disaster preparedness activities and post-disaster response. In combination, these will enhance the robustness of communities in all earthquake-vulnerable regions of our nation so that they can function adequately following damaging earthquakes. While National Earthquake Resilience is written primarily for the NEHRP, it also speaks to a broader audience of policy makers, earth scientists, and emergency managers.
Providing the first worldwide survey of active earthquake faults, this book focuses on those described as 'seismic time bombs' – with the potential to destroy large cities in the developing world such as Port au Prince, Kabul, Tehran and Caracas. Leading international earthquake expert, Robert Yeats, explores both the regional and plate-tectonic context of active faults, providing the background for seismic hazard evaluation in planning large-scale projects such as nuclear power plants or hydroelectric dams. He also highlights work done in more advanced seismogenic countries like Japan, the United States, New Zealand and China, providing an important basis for upgrading building standards and other laws in developing nations. The book also explores the impact of major quakes on social development through history. It will form an accessible reference for analysts and consulting firms, and a convenient overview for academics and students of geoscience, geotechnical engineering and civil engineering, and land-use planning.
Ecosystems and Human Well-Being is the first product of the Millennium Ecosystem Assessment, a four-year international work program designed to meet the needs of decisionmakers for scientific information on the links between ecosystem change and human well-being. The book offers an overview of the project, describing the conceptual framework that is being used, defining its scope, and providing a baseline of understanding that all participants need to move forward. The Millennium Assessment focuses on how humans have altered ecosystems, and how changes in ecosystem services have affected human well-being, how ecosystem changes may affect people in future decades, and what types of responses can be adopted at local, national, or global scales to improve ecosystem management and thereby contribute to human well-being and poverty alleviation. The program was launched by United National Secretary-General Kofi Annan in June 2001, and the primary assessment reports will be released by Island Press in 2005. Leading scientists from more than 100 nations are conducting the assessment, which can aid countries, regions, or companies by: providing a clear, scientific picture of the current sta
The National Geospatial-Intelligence Agency (NGA) provides geospatial intelligence (GEOINT) to support national security, both as a national intelligence and a combat support agency. In the post-9/11 world, the need for faster and more accurate geospatial intelligence is increasing. GEOINT uses imagery and geospatial data and information to provide knowledge for planning, decisions, and action. For example, data from satellites, pilotless aircraft and ground sensors are integrated with maps and other intelligence data to provide location information on a potential target. This report defines 12 hard problems in geospatial science that NGA must resolve in order to evolve their capabilities to meet future needs. Many of the hard research problems are related to integration of data collected from an ever-growing variety of sensors and non-spatial data sources, and analysis of spatial data collected during a sequence of time (spatio-temporal data). The report also suggests promising approaches in geospatial science and related disciplines for meeting these challenges. The results of this study are intended to help NGA prioritize geospatial science research directions.