Download Free Unusual Subduction Processes Book in PDF and EPUB Free Download. You can read online Unusual Subduction Processes and write the review.

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.
Earthquakes in shallow subduction zones account for the greatest part of seismic energy release in the Earth and often cause significant damage; in some cases they are accompanied by devastating tsunamis. Understanding the physics of seismogenic and tsunamigenic processes in such zones continues to be a challenging focus of ongoing research. The seismologic and geodetic work reported in this volume highlights the recent advances made toward quantifying and understandig the role of shallow plate coupling in the earthquake generation process. The relation between regional seismotectonics, features in the downgoing plate, and the slip distribution in earthquakes are examined for recent and great historical events. In addition to papers reporting new results, review articles on tsunami and tsunamigenic earthquakes and depth dependent plate interface properties are presented. These observational results, along with complementary laboratory and theoretical studies, can assist in assessing the seismic potential of a given region.
A comprehensive guide to carbon inside Earth - its quantities, movements, forms, origins, changes over time and impact on planetary processes. This title is also available as Open Access on Cambridge Core.
Continental margins and their fossilized analogues are important repositories of natural resources. With better processing techniques and increased availability of high-resolution seismic and potential field data, imaging of present-day continental margins and their embedded sedimentary basins has reached unprecedented levels of refinement and definition, as illustrated by examples described in this volume. This, in turn, has led to greatly improved geological, geodynamic and numerical models for the crustal and mantle processes involved in continental margin formation from the initial stages of rifting through continental rupture and break-up to development of a new ocean basin. Further informing these models, and contributing to a better understanding of the features imaged in the seismic and potential field data, are observations made on fossilized fragments of exhumed subcontinental mantle lithosphere and ocean–continent transition zones preserved in ophiolites and orogenic belts of both Palaeozoic and Mesozoic age from several different continents, including Europe, South Asia and Australasia.
What determines whether complex life will arise on a planet, or even any life at all? Questions such as these are investigated in this groundbreaking book. In doing so, the authors synthesize information from astronomy, biology, and paleontology, and apply it to what we know about the rise of life on Earth and to what could possibly happen elsewhere in the universe. Everyone who has been thrilled by the recent discoveries of extrasolar planets and the indications of life on Mars and the Jovian moon Europa will be fascinated by Rare Earth, and its implications for those who look to the heavens for companionship.
Treatise on Geophysics, Second Edition, is a comprehensive and in-depth study of the physics of the Earth beyond what any geophysics text has provided previously. Thoroughly revised and updated, it provides fundamental and state-of-the-art discussion of all aspects of geophysics. A highlight of the second edition is a new volume on Near Surface Geophysics that discusses the role of geophysics in the exploitation and conservation of natural resources and the assessment of degradation of natural systems by pollution. Additional features include new material in the Planets and Moon, Mantle Dynamics, Core Dynamics, Crustal and Lithosphere Dynamics, Evolution of the Earth, and Geodesy volumes. New material is also presented on the uses of Earth gravity measurements. This title is essential for professionals, researchers, professors, and advanced undergraduate and graduate students in the fields of Geophysics and Earth system science. Comprehensive and detailed coverage of all aspects of geophysics Fundamental and state-of-the-art discussions of all research topics Integration of topics into a coherent whole
The book summarizes the occurrence, geochemistry, mineralogy, petrology and phase-equilibria studies in air and under high pressures related to the most intriguing group of potassium-rich mafic and ultramafic rocks, often including host of exotic mineral assemblages including feldspathoids. Mantle-derived K-rich melts had intrigued most of the founders of Geology and many of the later experts in the field of Igneous Petrology, because they are sometimes associated with carbonatites and even diamond. They tend to contain anomalous concentration of many such elements as K, Rb, Sr, U, F, P, etc., along with Ni, Co and Cr indicating a mixture of crust and mantle materials. Although these rocks occur rarely in ancient geologic time, they have been erupting mostly in modern geological history (less than last 120 Ma or so). Are the old age data real or the result of a sampling problem? Modern observations leave no doubt that sediments must be subducted on a large scale. There is now evidence that the upper mantle (and perhaps even the lower mantle) is not homogeneous but rather like a fruit cake, and that there are thermal anomalies in the mantle resulting from deep mantle plumes or subduction. Is this related to release of these unusual rocks clearing the mantle of left over subduction materials? This volume, written for those interested in the geochemistry of K-rich melts from the deep Earth, reviews the present state of knowledge of these unique igneous rocks. The author is an expert in the field of Igneous Petrology and the book will serve as a valuable reference book for researchers and academicians in the discipline.
Quantifying the timescales of current geological processes is critical for constraining the physical mechanisms operating on the Earth today. Since the Earth’s origin 4.55 billion years ago magmatic processes have continued to shape the Earth, producing the major reservoirs that exist today (core, mantle, crust, oceans and atmosphere) and promoting their continued evolution. But key questions remain. When did the core form and how quickly? How are magmas produced in the mantle, and how rapidly do they travel towards the surface? How long do magmas reside in the crust, differentiating and interacting with the host rocks to yield the diverse set of igneous rocks we see today? How fast are volcanic gases such as carbon dioxide released into the atmosphere? This book addresses these and other questions by reviewing the latest advances in a wide range of Earth Science disciplines: from the measurement of short-lived radionuclides to the study of element diffusion in crystals and numerical modelling of magma behaviour. It will be invaluable reading for advanced undergraduate and graduate students, as well as igneous petrologists, mineralogists and geochemists involved in the study of igneous rocks and processes.