Download Free Unraveling Of Plant Soil Microbe Interactions For Phytoremediation Of Heavy Metal Contaminated Soils Considering Future Climate Change Impacts Book in PDF and EPUB Free Download. You can read online Unraveling Of Plant Soil Microbe Interactions For Phytoremediation Of Heavy Metal Contaminated Soils Considering Future Climate Change Impacts and write the review.

Anthropogenic activities and pedogenesis of soils derived from ultramafic rocks have caused heavy metal contamination worldwide. During the last two decades, phytoremediation has emerged as a potential eco-friendly tool to clean up heavy metal contaminated environments. However, various climatic stresses (eg: drought, extreme temperature, etc.) can affect physiobiochemical activities of remediating plants as well as heavy metal bioavailability in soils, therefore hampering phytoremediation efficiency. This situation could be ameliorated by exploring the plant-microbe partnership, which can improve plant growth and facilitate plant metal uptake. Plants are able to bioconcentrate (phytoextraction), bioimmobilize (phytostabilization), and/or biotransform (phytovolatilization) heavy metals via in situ rhizosphere processes. The speciation, mobilization, immobilization and distribution of heavy metals in the rhizosphere where root uptake or exclusion takes place, are critical factors that affect the phytoremediation process. Moreover, the effects of climatic stresses on plant growth and metal accumulation vary substantially across physic-chemical-biological properties of the environments and plants used. Developing microbe-assisted phytoremediation for either enhancing (phytoextraction) or reducing (phytostabilization) metal bioavailability in the rhizosphere as well as improving plant establishment, growth and health could significantly speed up the process of bioremediation techniques. In this book, topics of contemporary importance are covered including plant-soil-microbe interactions at the: Molecular level (molecular signals and quorum sensing); Cellular and organismal level (establishment of associative symbiosis of plant and microbes); Biogeochemical level (heavy metal detoxification, mobilization, immobilization, transformation, transport and distribution); Ecosystem level (mechanisms involved in plant-microbe-metal interactions) and at the Technological application level (case study of using plant growth to promote rhizobacterium for phytoremediation). Additionally, climate change effects on plant-metal-microbe interactions and phytoremediation are also included. This book brings a state-of-the-art review on microbe-assisted phytoremediation resulting from plant-microbe-metal interactions, providing high quality academic knowledge and understanding of this remediation technology.
Rhizosphere Engineering is a guide to applying environmentally sound agronomic practices to improve crop yield while also protecting soil resources. Focusing on the potential and positive impacts of appropriate practices, the book includes the use of beneficial microbes, nanotechnology and metagenomics. Developing and applying techniques that not only enhance yield, but also restore the quality of soil and water using beneficial microbes such as Bacillus, Pseudomonas, vesicular-arbuscular mycorrhiza (VAM) fungi and others are covered, along with new information on utilizing nanotechnology, quorum sensing and other technologies to further advance the science. Designed to fill the gap between research and application, this book is written for advanced students, researchers and those seeking real-world insights for improving agricultural production. - Explores the potential benefits of optimized rhizosphere - Includes metagenomics and their emerging importance - Presents insights into the use of biosurfactants
This book presents the most innovative recent methodological developments in phytoremediation research, and outlines a variety of the contexts in which phytoremediation has begun to be applied. A significant portion is devoted to groundbreaking methods for the production of plants that are able to degrade, take up, or tolerate the effects of pollutants. The book adopts a multidisciplinary approach to the examination of principles and practices of phytoremediation.
Phytoremediation with wetland plants is an eco-friendly, aesthetically pleasing, cost-effective, solar-driven, passive technique that is useful for cleaning up environmental pollutants with low to moderate levels of contamination.
Phytomanagement of Polluted Sites: Market Opportunities in Sustainable Phytoremediation brings together recent and established knowledge on different aspects of phytoremediation, providing this information in a single source that offers a cutting-edge synthesis of scientific and experiential knowledge on industrially contaminated site restoration that is useful for both practitioners and scientists. The book gives interested groups, both non-profit and for-profit, methods to manage dumpsites and other contaminated areas, including tactics on how to mitigate costs and even profit from ecological restoration. - Covers successful examples of turning industrially contaminated sites into ecologically healthy revenue producers - Explores examples of phytomanagement of dumpsites from around the globe - Provides the tools the reader needs to select specific plant species according to site specificity
A comprehensive overview of the topic, highlighting recent developments, ongoing research trends and future directions. Experts from Europe, Asia and the US cover five core areas of imminent importance to the food, feed, pharmaceutical and water treatment industries in terms of sustainable and innovative processing and production. In the field of enzyme engineering, they summarize historic developments and provide an overview of molecular enzyme engineering, while also discussing key principles of microbial process engineering, including chapters on process development and control. Further sections deal with animal and plant cell culture engineering. The final section of the book deals with environmental topics and highlights the application of bioengineering principles in waste treatment and the recovery of valuable resources. With its cutting-edge visions, extensive discussions and unique perspectives, this is a ready reference for biotechnologists, bioengineers, bioengineers, biotechnological institutes, and environmental chemists.
Phytoremediation is an exciting, new technology that utilizes metal-accumulating plants to rid soil of heavy metal and radionuclides. Hyperaccumulation plants are an appealing and economical alternative to current methods of soil recovery. Phytoremediation of Contaminated Soil and Water is the most thorough literary examination of the subject available today. The successful implementation of phytoremediation depends on identifying plant material that is well adapted to specific toxic sites. Gentle remediation is then applied in situ, or at the contamination site. No soil excavation or transport is necessary. This severely contains the potential risk of the pollutants entering the food chain. And it's cost effective. The progress of modern man has created many sites contaminated with heavy metals. The effected land is toxic to plants and animals , which creates considerable public interest in remediation. But the commonly used remedies are ex situ, which poses an expensive dilemma and an even greater threat. Phytoremediation offers the prospect of a cheaper and healthier way to deal with this problem. Read Phytoremediation of Contaminated Soil and Water to learn just how far this burgeoning technology has developed.
This book, prepared by participants of the European network COST ACTION 810 (1989-93) is the outcome of a meeting held in Switzerland (Einsiedeln, September 29 to October 2, 1993) on the "Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems". COST(Cooperation Scientifique et Technique) Networks were created in 1971 by the Commission of European Communities, and later enlarged to include non-European Member States, to promote pre-competitive scientific and technical research in fields of common interest. During the eighties, COST ACTIONS were launched in bio technological fields, including the network on arbuscular mycorrhizas. Arbuscular mycorrhizas are a universally found symbiosis between plants and certain soil fungi and essential components of soil-plant systems. They act as a major inter face by influencing or regulating resource allocation between abiotic and biotic components of the soil-plant system. Arbuscular mycorrhizas are involved in many key ecosystem processes including nutrient cycling and conservation of soil struc ture, and have been shown to improve plant health through increased protection against abiotic and biotic stresses. Sustainability can be defined as the successful management of resources to satisfy changing human needs while maintaining or enhancing the quality of the environ ment and conserving resources. Increasing environmental degradation and instability, due to anthropogenic activities and in particular the increasing fragility of the soil resource, has led to an increased awareness of the need to develop practices resulting in more sustainable natural and agroecosystems.
This book provides a straightforward and easy-to-understand overview of beneficial plant-bacterial interactions. It features a wealth of unique illustrations to clarify the text, and each chapter includes study questions that highlight the important points, as well as references to key experiments. Since the publication of the first edition of Beneficial Plant-Bacterial Interactions, in 2015, there has been an abundance of new discoveries in this area, and in recent years, scientists around the globe have begun to develop a relatively detailed understanding of many of the mechanisms used by bacteria that facilitate plant growth and development. This knowledge is gradually becoming an integral component of modern agricultural practice, with more and more plant growth-promoting bacterial strains being commercialized and used successfully in countries throughout the world. In addition, as the world’s population continues to grow, the pressure for increased food production will intensify, while at the same time, environmental concerns, mean that environmentally friendly methods of food production will need to replace many traditional agricultural practices such as the use of potentially dangerous chemicals. The book, intended for students, explores the fundamentals of this new paradigm in agriculture, horticulture, and environmental cleanup.