Download Free Unlicensed Book in PDF and EPUB Free Download. You can read online Unlicensed and write the review.

The goal of Unlicensed Mobile Access (UMA) is to provide seamless access to GSM and GPRS mobile service networks via unlicensed spectrum technologies, including Bluetooth, WiMAX, and Wi-Fi. Expanding on the level of knowledge in this growing field, Unlicensed Mobile Access Technology: Protocols, Architectures, Security, Standards, and Applications
In times of situational therapeutic impasse, health care professionals (HCPs) are under pressure to conduct off-label, unlicensed and compassionate drug use—generally summarized under the term non-licensed drug use (NDU). Liability, contractual and penal risks pose a problem when treating a patient in a non-licensed way. There is a knowledge gap about institutional and governmental methods to resolve these problems. Different countries have developed strategies to manage NDU. Vanessa Platé gives a comprehensive overview of practices Canada, the U.S., the U.K., Japan, France, Germany, Switzerland, Austria, and the transnational E.U. A must-read for everyone interested in the discussion on how to administer the best treatment, especially regarding early access to yet unapproved treatments.
This SpringerBrief investigates cross layer resource allocation in unlicensed LTE (Long Term Evolution) HetNets. Specifically, the authors study and cover the radio access management of unlicensed LTE to allow efficient spectrum utilization and harmonious coexistence with other unlicensed systems in this brief. Efficient radio access protocols are developed to allow unlicensed LTE users to fair share channel access with unlicensed users in different systems, including Wi-Fi and unlicensed LTE of other operators. An analytical model is developed to study the performance of the proposed protocols. To achieve efficient spectrum sharing among various unlicensed users, the authors further formulate a resource allocation problem based on Nobel Prize winning game theory framework, and propose efficient algorithms to achieve the maximal user utility. Opportunistic traffic offloading from licensed band to unlicensed bands is also investigated, based on the network formation game. By exploiting the characteristics of mobile social networks, the offloading performance can be further enhanced. This brief targets researchers and engineers from both academia and industry interested in the development of LTE over unlicensed bands, as well as the design and implementation of cross layer radio resource management. Students studying electrical engineering and computer science will also find this brief useful for their studies.
This Synthesis Lecture presents a discussion of Quality of Service (QoS) in wireless networks over unlicensed spectrum. The topic is presented from the point of view of protocols for wireless networks (e.g., 802.11) rather than the physical layer point of view usually discussed for cellular networks in the licensed wireless spectrum. A large number of mobile multimedia wireless applications are being deployed over WiFi (IEEE 802.11) and Bluetooth wireless networks and the number will increase in the future as more phones, tablets, and laptops are equipped with these unlicensed spectrum wireless interfaces. Achieving QoS objectives in wireless networks is challenging due to limited wireless resources, wireless nodes interference, wireless shared media, node mobility, and diverse topologies. The author presents the QoS problem as (1) an optimization problem with different constraints coming from the interference, mobility, and wireless resource constraints and (2) an algorithmic problem with fundamental algorithmic functions within wireless resource management and protocols. Table of Contents: Preface / Basics of Quality of Service in Wireless Networks / QoS-Aware Resource Allocation / Bandwidth Management / Delay Management / Routing / Acknowledgment / References / Author Biography
This SpringerBrief focuses on the coexistence concerns emerging in LTE networks using unlicensed frequency bands. It provides a comprehensive review on LTE networks and their unavoidable need for enhanced capacity to meet the demands for future applications, including a need for low-cost options. LTE using unlicensed frequency (U-LTE) is then introduced as the most promising solution, and discussed from various perspectives to unveil its benefits, challenges, and requirements for coexistence with the widely-deployed IEEE 802.11/Wi-Fi technology. Meeting these coexistence requirements is the most important factor for the acceptance of U-LTE, and the majority of this brief explores the big picture concerns and existing solutions related to coexistence-aware medium access protocols for background knowledge. A proposed network-aware adaptive listen-before-talk protocol is presented and evaluated. Finally, the authors identify a number of open technical questions and potential research issues in U-LTE. This SpringerBrief is suitable for telecom engineers, researchers, and academic professionals with valuable knowledge and potential working or research directions when designing and developing medium access protocols for next generation wireless access networks.