Download Free Universalities In Condensed Matter Book in PDF and EPUB Free Download. You can read online Universalities In Condensed Matter and write the review.

Universality is the property that systems of radically different composition and structure exhibit similar behavior. The appearance of universal laws in simple critical systems is now well established experimentally, but the search for universality has not slackened. This book aims to define the current status of research in this field and to identify the most promising directions for further investigations. On the theoretical side, numerical simulations and analytical arguments have led to expectations of universal behavior in several nonequilibrium systems, e.g. aggregation, electric discharges, and viscous flows. Experimental work is being done on "geometric" phase transitions, e.g. aggregation and gelation, in real systems. The contributions to this volume allow a better understanding of chaotic systems, turbulent flows, aggregation phenomena, fractal structures, and quasicrystals. They demonstrate how the concepts of renormalization group transformations, scale invariance, and multifractality are useful for describing inhomogeneous materials and irreversible phenomena.
This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.
A pioneering treatise presenting how the mathematical techniques of holographic duality can unify the fundamental theories of physics.
A modern, graduate-level introduction to many-body physics in condensed matter, this textbook explains the tools and concepts needed for a research-level understanding of the correlated behavior of quantum fluids. Starting with an operator-based introduction to the quantum field theory of many-body physics, this textbook presents the Feynman diagram approach, Green's functions and finite-temperature many-body physics before developing the path integral approach to interacting systems. Special chapters are devoted to the concepts of Fermi liquid theory, broken symmetry, conduction in disordered systems, superconductivity and the physics of local-moment metals. A strong emphasis on concepts and numerous exercises make this an invaluable course book for graduate students in condensed matter physics. It will also interest students in nuclear, atomic and particle physics.
Publisher Description
The 9 papers of this volume were presented at the March 1995 Symposium honoring Raymond L Orbach on his 60th birthday. The range of topics reflects the breadth of Dr Orbach's own research. It includes magnetism and transport in nanostructures, crystal fields in superconducting cuprates, fractons and scaling in disordered systems, glassy relaxation, inelastic atom-crystal scattering, bosonization in d > 1, and microwave effects in superconductors.
Now in paperback, this book provides an overview of the physics of condensed matter systems. Assuming a familiarity with the basics of quantum mechanics and statistical mechanics, the book establishes a general framework for describing condensed phases of matter, based on symmetries and conservation laws. It explores the role of spatial dimensionality and microscopic interactions in determining the nature of phase transitions, as well as discussing the structure and properties of materials with different symmetries. Particular attention is given to critical phenomena and renormalization group methods. The properties of liquids, liquid crystals, quasicrystals, crystalline solids, magnetically ordered systems and amorphous solids are investigated in terms of their symmetry, generalised rigidity, hydrodynamics and topological defect structure. In addition to serving as a course text, this book is an essential reference for students and researchers in physics, applied physics, chemistry, materials science and engineering, who are interested in modern condensed matter physics.
The book provides an accessible introduction to the principles of condensed matter physics with a focus on the nanosciences and device technologies. The basics of electronic, phononic, photonic, superconducting, optics, quantum optics, and magnetic properties are explored, and nanoscience and device materials are incorporated throughout the chapters. Many examples of the fundamental principles of condensed matter physics are taken directly from nanoscience and device applications. This book requires a background in electrodynamics, quantum mechanics, and statistical mechanics at the undergraduate level. It will be a valuable reference for advanced undergraduates and graduate students of physics, engineering, and applied mathematics. Features Contains discussions of the basic principles of quantum optics and its importance to lasers, quantum information, and quantum computation. Provides references and a further reading list to additional scientific literature so that readers can use the book as a starting point to then follow up with a more advanced treatment of the topics covered. Requires only a basic background in undergraduate electrodynamics, quantum mechanics, and statistical mechanics.