Download Free Unitary Invariants In Multivariable Operator Theory Book in PDF and EPUB Free Download. You can read online Unitary Invariants In Multivariable Operator Theory and write the review.

This paper concerns unitary invariants for $n$-tuples $T:=(T_1,\ldots, T_n)$ of (not necessarily commuting) bounded linear operators on Hilbert spaces. The author introduces a notion of joint numerical radius and works out its basic properties. Multivariable versions of Berger's dilation theorem, Berger-Kato-Stampfli mapping theorem, and Schwarz's lemma from complex analysis are obtained. The author studies the joint (spatial) numerical range of $T$ in connection with several unitary invariants for $n$-tuples of operators such as: right joint spectrum, joint numerical radius, euclidean operator radius, and joint spectral radius. He also proves an analogue of Toeplitz-Hausdorff theorem on the convexity of the spatial numerical range of an operator on a Hilbert space, for the joint numerical range of operators in the noncommutative analytic Toeplitz algebra $F_n^\infty$.
This is a collection of papers presented at a conference on multivariable operator theory. The articles contain contributions to a variety of areas and topics which may be viewed as forming an emerging new subject. This subject involves the study of geometric rather than topological invariants associated with the general theme of operator theory in several variables. This collection will spur further discussion among the different research groups.
Over the course of his distinguished career, Jörg Eschmeier made a number of fundamental contributions to the development of operator theory and related topics. The chapters in this volume, compiled in his memory, are written by distinguished mathematicians and pay tribute to his many significant and lasting achievements.
"Volume 205, number 964 (third of 5 numbers)."
Let $X$ be a locally compact Hausdorff space with $n$ proper continuous self maps $\sigma_i:X \to X$ for $1 \le i \le n$. To this the authors associate two conjugacy operator algebras which emerge as the natural candidates for the universal algebra of the system, the tensor algebra $\mathcal{A}(X,\tau)$ and the semicrossed product $\mathrm{C}_0(X)\times_\tau\mathbb{F}_n^+$. They develop the necessary dilation theory for both models. In particular, they exhibit an explicit family of boundary representations which determine the C*-envelope of the tensor algebra.|Let $X$ be a locally compact Hausdorff space with $n$ proper continuous self maps $\sigma_i:X \to X$ for $1 \le i \le n$. To this the authors associate two conjugacy operator algebras which emerge as the natural candidates for the universal algebra of the system, the tensor algebra $\mathcal{A}(X,\tau)$ and the semicrossed product $\mathrm{C}_0(X)\times_\tau\mathbb{F}_n^+$. They develop the necessary dilation theory for both models. In particular, they exhibit an explicit family of boundary representations which determine the C*-envelope of the tensor algebra.
This volume contains the proceedings of the eighteenth International Workshop on Operator Theory and Applications (IWOTA), hosted by the Unit for Business Mathematics and Informatics of North-West University, Potchefstroom, South Africa from July 3 to 6, 2007. The conference (as well as these proceedings) was dedicated to Professors Joseph A. Ball and Marinus M. Kaashoek on the occasion of their 60th and 70th birthdays, respectively. This conference had a particular focus on Von Neumann algebras at the interface of operator theory with functional analysis and on applications of operator theory to differential equations.
The authors study the Lyapunov exponents and their associated invariant subspaces for infinite dimensional random dynamical systems in a Banach space, which are generated by, for example, stochastic or random partial differential equations. The authors prove a multiplicative ergodic theorem and then use this theorem to establish the stable and unstable manifold theorem for nonuniformly hyperbolic random invariant sets.
Contains the proof of a noncommutative analogue of the inequality for sums of free random variables over a given von Neumann subalgebra.
This volume concerns invariants of $G$-torsors with values in mod $p$ Galois cohomology--in the sense of Serre's lectures in the book Cohomological invariants in Galois cohomology--for various simple algebraic groups $G$ and primes $p$. The author determines the invariants for the exceptional groups $F_4$ mod 3, simply connected $E_6$ mod 3, $E_7$ mod 3, and $E_8$ mod 5. He also determines the invariants of $\mathrm{Spin}_n$ mod 2 for $n \leq 12$ and constructs some invariants of $\mathrm{Spin}_{14}$. Along the way, the author proves that certain maps in nonabelian cohomology are surjective. These surjectivities give as corollaries Pfister's results on 10- and 12-dimensional quadratic forms and Rost's theorem on 14-dimensional quadratic forms. This material on quadratic forms and invariants of $\mathrm{Spin}_n$ is based on unpublished work of Markus Rost. An appendix by Detlev Hoffmann proves a generalization of the Common Slot Theorem for 2-Pfister quadratic forms.