Download Free Unimodal Log Concave And Polya Frequency Sequences In Combinatorics Book in PDF and EPUB Free Download. You can read online Unimodal Log Concave And Polya Frequency Sequences In Combinatorics and write the review.

Many sequences of combinatorial interest are known to be unimodal or log-concave and there has been a considerable amount of interest devoted to this topic. The main object of this work is to point out another branch of mathematics that can be successfully used to attack these kinds of problems, namely, the theory of total positivity.
This book contains twenty-two papers presented at the International Conference in Combinatorics, held in Jerusalem in May 1993. The papers describe some of the latest developments in algebraic combinatorics, enumeration, graph and hypergraph theory, combinatorial geometry, and geometry of polytopes and arrangements. The papers are accessible to specialists as well as nonspecialists.
Richard Stanley's work in combinatorics revolutionized and reshaped the subject. His lectures, papers, and books inspired a generation of researchers. In this volume, these researchers explain how Stanley's vision and insights influenced and guided their own perspectives on the subject. As a valuable bonus, this book contains a collection of Stanley's short comments on each of his papers. This book may serve as an introduction to several different threads of ongoing research in combinatorics as well as giving historical perspective.
In their preface, the editors describe algebraic combinatorics as the area of combinatorics concerned with exact, as opposed to approximate, results and which puts emphasis on interaction with other areas of mathematics, such as algebra, topology, geometry, and physics. It is a vibrant area, which saw several major developments in recent years. The goal of the 2022 conference Open Problems in Algebraic Combinatorics 2022 was to provide a forum for exchanging promising new directions and ideas. The current volume includes contributions coming from the talks at the conference, as well as a few other contributions written specifically for this volume. The articles cover the majority of topics in algebraic combinatorics with the aim of presenting recent important research results and also important open problems and conjectures encountered in this research. The editors hope that this book will facilitate the exchange of ideas in algebraic combinatorics.
The book offers a comprehensive introduction to Leavitt path algebras (LPAs) and graph C*-algebras. Highlighting their significant connection with classical K-theory—which plays an important role in mathematics and its related emerging fields—this book allows readers from diverse mathematical backgrounds to understand and appreciate these structures. The articles on LPAs are mostly of an expository nature and the ones dealing with K-theory provide new proofs and are accessible to interested students and beginners of the field. It is a useful resource for graduate students and researchers working in this field and related areas, such as C*-algebras and symbolic dynamics.
The articles in this collection present new results in combinatorics, algebra, algebraic geometry, dynamical systems, analysis, and probability. Of particular interest is the survey article by A. N. Kirillov devoted to combinatorics of Young diagrams and related problems of representation theory. Also included are articles devoted to the eightieth birthday of renowned Russian mathematician, V. A. Rokhlin, ``Remembrances of V. A. Rokhlin'', by I. R. Shafarevich, and ``An Unfinished Project of V.A. Rokhlin'', by V. N. Sudakov. The results, ideas, and methods given in the book will be of interest to a broad range of specialists.
Polynomials are incredibly useful mathematical tools that have a wide array of applications. This book provides a comprehensive overview of polynomials and recent developments in the field. It includes ten chapters that address such topics as polynomials-based cyclic coding, Hermite polynomials, Routh polynomials, fitting parametric polynomials with control point coefficients, the thermoelastic wave model, and much more.
Combinatorics and Number Theory of Counting Sequences is an introduction to the theory of finite set partitions and to the enumeration of cycle decompositions of permutations. The presentation prioritizes elementary enumerative proofs. Therefore, parts of the book are designed so that even those high school students and teachers who are interested in combinatorics can have the benefit of them. Still, the book collects vast, up-to-date information for many counting sequences (especially, related to set partitions and permutations), so it is a must-have piece for those mathematicians who do research on enumerative combinatorics. In addition, the book contains number theoretical results on counting sequences of set partitions and permutations, so number theorists who would like to see nice applications of their area of interest in combinatorics will enjoy the book, too. Features The Outlook sections at the end of each chapter guide the reader towards topics not covered in the book, and many of the Outlook items point towards new research problems. An extensive bibliography and tables at the end make the book usable as a standard reference. Citations to results which were scattered in the literature now become easy, because huge parts of the book (especially in parts II and III) appear in book form for the first time.
Presenting the state of the art, the Handbook of Enumerative Combinatorics brings together the work of today's most prominent researchers. The contributors survey the methods of combinatorial enumeration along with the most frequent applications of these methods.This important new work is edited by Miklos Bona of the University of Florida where he
The book is centered around the research areas of combinatorics, special functions, and computer algebra. What these research fields share is that many of their outstanding results do not only have applications in Mathematics, but also other disciplines, such as computer science, physics, chemistry, etc. A particular charm of these areas is how they interact and influence one another. For instance, combinatorial or special functions' techniques have motivated the development of new symbolic algorithms. In particular, first proofs of challenging problems in combinatorics and special functions were derived by making essential use of computer algebra. This book addresses these interdisciplinary aspects. Algorithmic aspects are emphasized and the corresponding software packages for concrete problem solving are introduced. Readers will range from graduate students, researchers to practitioners who are interested in solving concrete problems within mathematics and other research disciplines.