Download Free Unification Of Fundamental Interactions Book in PDF and EPUB Free Download. You can read online Unification Of Fundamental Interactions and write the review.

The Yang-Mills theory of gauge interactions is a prime example of interdisciplinary mathematics and advanced physics. Its historical development is a fascinating window into the ongoing struggle of mankind to understand nature. The discovery of gauge fields and their properties is the most formidable landmark of modern physics. The expression of the gauge field strength as the curvature associated to a given connection, places quantum field theory in the same geometrical footing as the gravitational field of general relativity which is naturally written in geometrical terms. The understanding of such geometrical property may help one day to write a unified field theory starting from symmetry principles. Of course, there are remarkable differences between the standard gauge fields and the gravitational field, which must be understood by mathematicians and physicists before attempting such unification. In particular, it is important to understand why gravitation is not a standard gauge field. This book presents an account of the geometrical properties of gauge field theory, while trying to keep the equilibrium between mathematics and physics. At the end we will introduce a similar approach to the gravitational field.
The recent high precision results from the LEP supercollider at CERN appear favorable for supergravity unification of the electroweak and the strong forces. The proceedings of the SUSY 93 Workshop focus on further precise predictions of unification which may be observed in the laboratory. In addition, the proceedings cover a wide range of other topics in supersymmetry, supergravity, particle physics, string theory and cosmology and their interconnections. They include both theoretical and experimental papers, hence presenting a complete and comprehensive picture of this important subject.
The theoretical understanding of elementary particle interactions has under gone a revolutionary change during the past one and a half decades. The spontaneously broken gauge theories, which in the 1970s emerged as a prime candidate for the description of electro-weak (as weIl as strong) interactions, have been confirmed by the discovery of neutral weak currents as weIl as the w- and Z-bosons. We now have a field theory of electro-weak interactions at energy scales below 100 GeV-the Glashow-Weinberg-Salam theory. It is a renormalizable theory which enables us to do calculations without en countering unnecessary divergences. The burning question now is: Wh at lies ahead at the next level of unification? As we head into the era of supercolliders and ultrahigh energy machines to answer this question, many ap, pealing possi bilities exist: left-right symmetry, technicolor, compositeness, grand unifica ti on, supersymmetry, supergravity, Kaluza-Klein models, and most recently superstrings that even unify gravity along with other interactions. Experi ments will decide if any one or any combination of these is to be relevant in the description of physics at the higher energies. As an outcome of our con fidence in the possible scenerios for elementary particle physics, we have seen our understanding of the early uni verse improve significantly.
Paul Adrian Maurice Dirac, one of the greatest physicists of the twentieth century, died in 1984. His college, St John's College, Cambridge, generously endowed annual lectures to be held at Cambridge University in his memory. This 1990 volume includes an expanded version of the third Dirac Memorial Lecture presented by Abdus Salam.
During the last years of his life Einstein tried unsuccessfully to unify electromagnetic force with gravitational force geometrically. The nearest he got was through the ideas of Kaluza and Klein who appended a tiny fifth commuting coordinate to spacetime. Researchers have followed in those footsteps by adding at least six more such minuscule coordinates so as to incorporate the other forces of nature, culminating in string theory — which has unfortunately not met with experimental support. Other proposals have likewise failed or are still waiting to be confirmed experimentally.The author shows that one can successfully unify gravity with electromagnetism geometrically by adding a single complex anticommuting coordinate to spacetime, which can be associated with the property of 'electricity'. By adding extra four anticommuting properties ('chromicity' and 'neutrinicity'), associated with strong and weak interactions, one can get a unified picture of all the natural forces and particles including the 'standard model': The whole construct relies upon the full specification of events and automatically allows for replication of particle families. The monograph traces the history of attempts of unification before explaining the author's 'where-when-what' scheme.
Work on the unification of the fundamental particle interac tions has continued vigorously since the first Europhysics study Conference on this subject. At that time we emphasized the exis tence of two main approaches, one based on supersymmetry and pos sibly its local version, supergravity, and the other approach based on grand unified gauge theories. Discussion of the possible tests of these theoretical speculations included experiments on baryon decay and neutrino oscillations. In view of the uncertainties surrounding the observability of such phenomena, the early Universe was welcomed as a possible Laboratory for testing new theoretical ideas. At that time, we expressed the hope that the different gauge and super symmetry approaches would cross-fertilize each other" and it is appropriate to ask now how much of that hope has been realized. We believe there has recently been considerable theoretical rapprochement, which is amply reflected in these Proceedings. On the one hand it has been realized that many of the technical pro blems in grand unified gauge theories, such as arranging the hierarchy of different mass scales, may be alleviated using simple global supersymmetry. On the other hand there has been growing interest in the possibility that extended supergravity theories may furnish a suitable framework for the unification of all the fundamental particle interactions. Many physicists in fact now question actively whether the known "fundamental" particles are in deed elementary, or whether they are composite.
Vol. 1. I. Introduction -- II. Review of the standard 123 theory -- III. Grand unification -- IV. SO(10) -- V. Exceptional unification -- VI. Reality and complexity of the world -- VII. Proton decay -- VIII. Family problem and orthogonal unification -- IX. Fermion mass hierarchy -- Vol. 2. X.A short course in cosmology -- XI. Genesis of matter -- XII. Introduction to the theory of galaxy formation -- XIII. Neutrinos and galaxies -- XIV. Monopoles and inflation -- XV. Hierarchy, technicolor, supersymmetry, and variations -- XVI. Invisible axions -- XVII. Composite quarks and leptons -- XVIII. Gravity and grand unification
This annual SUSY conference has become the world's largest international meeting devolted to new ideas in high energy physics. The main subject of the conference is theoretical and phenomenological aspects of supersymmetric theories, and dark matter and dark energy, and other comological connections. New, interesting results from various experimental groups are increasingly presented at the conference as well. With roughly 200 plenary and parallel presentations, SUSY08 will likely deliver energy and enthusiasm of both theorists and experimentalists who are searching the frontier of high energy physics.
A concise introduction to the cutting-edge science of particle physics The standard model of particle physics describes our current understanding of nature's fundamental particles and their interactions, yet gaps remain. For example, it does not include a quantum theory of gravity, nor does it explain the existence of dark matter. Once complete, however, the standard model could provide a unified description of the very building blocks of the universe. Researchers have been chasing this dream for decades, and many wonder whether such a dream can ever be made a reality. Can the Laws of Physics Be Unified? is a short introduction to this exciting frontier of physics. The book is accessibly written for students and researchers across the sciences, and for scientifically minded general readers. Paul Langacker begins with an overview of the key breakthroughs that have shaped the standard model, and then describes the fundamental particles, their interactions, and their role in cosmology. He goes on to explain field theory, internal symmetries, Yang-Mills theories, strong and electroweak interactions, the Higgs boson discovery, and neutrino physics. Langacker then looks at the questions that are still unanswered: What is the nature of the mysterious dark matter and dark energy that make up roughly 95 percent of the universe? Why is there more matter than antimatter? How can we reconcile quantum mechanics and general relativity? Can the Laws of Physics Be Unified? describes the promising theoretical ideas and new experiments that could provide answers and weighs our prospects for establishing a truly unified theory of the smallest constituents of nature and their interactions.
In this book, the author leads the reader, step by step and without any advanced mathematics, to a clear understanding of the foundations of modern elementary particle physics and cosmology. He also addresses current and controversial questions on topics such as string theory. The book contains gentle introductions to the theories of special and general relativity, and also classical and quantum field theory. The essential aspects of these concepts are understood with the help of simple calculations; for example, the force of gravity as a consequence of the curvature of the space-time. Also treated are the Big Bang, dark matter and dark energy, as well as the presently known interactions of elementary particles: electrodynamics, the strong and the weak interactions including the Higgs boson. Finally, the book sketches as yet speculative theories: Grand Unification theories, supersymmetry, string theory and the idea of additional dimensions of space-time. Since no higher mathematical or physics expertise is required, the book is also suitable for college and university students at the beginning of their studies. Hobby astronomers and other science enthusiasts seeking a deeper insight than can be found in popular treatments will also appreciate this unique book.