Download Free Uniaxial Compaction Of Particulate Solids Under Low Stresses Book in PDF and EPUB Free Download. You can read online Uniaxial Compaction Of Particulate Solids Under Low Stresses and write the review.

Enlargement and Compaction of Particulate Solids describes the methodology used in the compaction and size enlargement of particulate solids. The discussions are organized into the following topics: characterization of powders and granules before and after compaction; mixing; shear testing; fluidized bed granulation; mechanisms of size enlargement and compaction; and instrumentation of industrial presses and processes. This text is comprised of 12 chapters; the first of which deals with the measurement of size and shape of individual particles or collections of individual particles, both spherical and non-spherical. Attention then turns to particle characterization by size, shape, and surface for contacted particles. The application of nitrogen isotherms Types II and IV and mercury intrusion to compacted solids is highlighted. The chapters that follow focus on powder mixing; flow and handling of solids; and pharmaceutical granulation and compaction. The basic mechanisms of size enlargement are reviewed in relation to three common methods of granulation: pan granulation, fluidized bed granulation, and spray drying or prilling. The remaining chapters describe the mechanisms of compaction, compact characterization, instrumentation of tablet machines, compaction of ceramics, and isostatic pressing and compacting techniques. This book is intended primarily for students and chemical engineers as well as physicists, powder and pharmaceutical technologists, ceramacists, and metallurgists.
Over half of the products of the chemical and process industries are sold in a particulate form. The range of such products is vast: from agrochemicals to pigments, from detergents to foods, from plastics to pharmaceuticals. However, surveys of the performance of processes designed to produce particulate products have consistently shown inadequate design and poor reliability. `Particle technology' is a new subject facing new challenges. Chemical and process engineering is becoming less concerned with the design of plants to produce generic simple chemicals (which are often single phase fluids) and is now more concerned with speciality `effect' chemicals which may often be in particulate form. Chemical and process engineers are also being recruited in increasing numbers into areas outside their tranditional fields, such as the food industry, pharmaceuticals and the manufacture of a wide variety of consumer products. This book has been written to meet their needs. It provides comprehensive coverage of the technology of particulate solids, in a form which is both accessible and concise enough to be useful to engineering and science students in the final year of an undergraduate degree, and at Master's level. Although it was written with students of chemical engineering in mind, it will also be of use and interest to students of other disciplines. It comprises an account of the fundamentals of teh subject, illustrated by worked examples, and followed by a wide range of selected applications.
This volume constitutes the Proceedings of the IUT AM Symposium on Mechanics of Granular and Porous Materials, held in Cambridge from 15th to 17th July 1996. The objectives were: 1. To review existing experimental results and practical phenomena on the flow and compaction of particulate media; 2. To review the current state of constitutive models, and their implementation for predicting the macroscopic response. 3. Identification of the shortcomings of existing models and procedures in understanding practical phenomena. The Symposium brought together the research communities of solid mechanics, materials science, geomechanics, chemical engineering and mathematics to review current knowledge of the flow and compaction of granular and porous media. The meeting emphasised the development and use of constitutive laws to model practical processes such as mixing, drainage and drying, compaction of metal and ceramic powders and soils, and instabilities associated with these processes. A common theme was to develop constitutive models from an understanding of the underlying physical mechanisms of deformation and fracture. It was particularly rewarding to find that the separate research communities came together during the meeting and came to a consensus as to the main mechanisms of deformation and failure of particulate and porous solids.
This book records the contributions of about 30 speakers who were invited to review a wide range of topics in the field of solid-solid interactions. Each chapter includes discussion points drawn from about 125 attendees at the forum. The first part of the book is concerned with short range interactions and includes chapters on contact mechanics, nano-indentation adhesion, friction, wear and grandular mechanics. The second part is concerned with long range forces and includes chapters on the direct measurement of these forces, including those that arise in lubricated contacts and their role in controlling the rheological properties of particulate suspensions.
Mechanics of Particulate Materials
Chemical Engineering and Chemical Process Technology is a theme component of Encyclopedia of Chemical Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty Encyclopedias. Chemical engineering is a branch of engineering, dealing with processes in which materials undergo changes in their physical or chemical state. These changes may concern size, energy content, composition and/or other application properties. Chemical engineering deals with many processes belonging to chemical industry or related industries (petrochemical, metallurgical, food, pharmaceutical, fine chemicals, coatings and colors, renewable raw materials, biotechnological, etc.), and finds application in manufacturing of such products as acids, alkalis, salts, fuels, fertilizers, crop protection agents, ceramics, glass, paper, colors, dyestuffs, plastics, cosmetics, vitamins and many others. It also plays significant role in environmental protection, biotechnology, nanotechnology, energy production and sustainable economical development. The Theme on Chemical Engineering and Chemical Process Technology deals, in five volumes and covers several topics such as: Fundamentals of Chemical Engineering; Unit Operations – Fluids; Unit Operations – Solids; Chemical Reaction Engineering; Process Development, Modeling, Optimization and Control; Process Management; The Future of Chemical Engineering; Chemical Engineering Education; Main Products, which are then expanded into multiple subtopics, each as a chapter. These five volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs.