Download Free Understanding Scientific Literatures Book in PDF and EPUB Free Download. You can read online Understanding Scientific Literatures and write the review.

This work was written from the conviction that if as many readers as possible are to be provided with the material they want or directed toward the material they actually need, it is necessary to describe more exactly how vital information is distributed within available subject literatures and to measure the comparative merits of various sources.
Science is a way of knowing about the world. At once a process, a product, and an institution, science enables people to both engage in the construction of new knowledge as well as use information to achieve desired ends. Access to scienceâ€"whether using knowledge or creating itâ€"necessitates some level of familiarity with the enterprise and practice of science: we refer to this as science literacy. Science literacy is desirable not only for individuals, but also for the health and well- being of communities and society. More than just basic knowledge of science facts, contemporary definitions of science literacy have expanded to include understandings of scientific processes and practices, familiarity with how science and scientists work, a capacity to weigh and evaluate the products of science, and an ability to engage in civic decisions about the value of science. Although science literacy has traditionally been seen as the responsibility of individuals, individuals are nested within communities that are nested within societiesâ€"and, as a result, individual science literacy is limited or enhanced by the circumstances of that nesting. Science Literacy studies the role of science literacy in public support of science. This report synthesizes the available research literature on science literacy, makes recommendations on the need to improve the understanding of science and scientific research in the United States, and considers the relationship between scientific literacy and support for and use of science and research.
Discusses writers such as Poul Anderson, Brian W. Aldiss, Isaac Asimov, J.G. Ballard, Alfred Bester, James Blish, Anthony Boucher, Ray Bradbury, Algis Budrys, Edgar Rice Burroughs, John W. Campbell, Arthur C. Clarke, Hal Clement, Samuel R. Delany, Lester del Rey, Philip K. Dick, Gordon R. Dickson, Thomas Disch, Harlan Ellison, Philip Jose Farmer, Randall Garrett, Robert A. Heinlein, Zenna Henderson, Frank Herbert, Damon Knight, Cyril Kornbluth, Ursula K. Le Guin, Murray Leinster, Anne McCaffrey, Judith Merril, A. Merritt, Walter M. Miller Jr., Michael Moorcock, Andre Norton, Alexei Panshin, H. Beam Piper, Frederik Pohl, Joanna Russ, Robert Silverberg, Clifford D. Simak, Cordwainer Smith, E.E. "Doc" Smith, Norman Spinrad, Theodore Sturgeon, Jack Vance, A.E. van Vogt, Kurt Vonnegut, Donald Wollheim, RogerZelazny, Jack Williamson, and others.
Science is everywhere, in everything we do, see, and read. Books-all books-offer possibilities for talk about science in the illustrations and text once you know how to look for them. Children's literature is a natural avenue to explore the seven crosscutting concepts described in the Next Generation Science Standards*, and with guidance from Valerie Bang-Jensen and Mark Lubkowitz, you will learn to develop the mindset necessary to think like a scientist, and then help your students think, talk, and read like scientists. Sharing Books Talking Science is an engaging and user-friendly guide that provides practical, real world understandings of complex scientific concepts using children's literature. By demonstrating how to work in a very familiar and comfortable teaching context-read aloud-to address what may be less familiar and comfortable content-scientific concepts-Valerie and Mark empower teachers to use just about any book in their classroom to help deepen students' understanding of the world. Valerie and Mark supply you with everything you need to know to get to the heart of each concept, including a primer, questions and strategies to spot a concept, and ways to prompt students to see and talk about it. Each chapter offers a list of suggested titles (many of which you probably already have) to help you get started right away, as well as "topic spotlight" sections that help you connect the concepts to familiar topics such as eating, seasons, bridges, size, and water. With Sharing Books Talking Science, you will have the tools and confidence to explore scientific concepts with your students. Learn how to "talk science" with any book so that you can infuse your curriculum with scientific thinking...even when you aren't teaching science. *Next Generation Science Standards is a registered trademark of Achieve. Neither Achieve nor the lead states and partners that developed the Next Generation Science Standards were involved in the production of this product, and do not endorse it.
CiteSpace is a freely available computer program written in Java for visualizing and analyzing literature of a scientific domain. A knowledge domain is broadly defined in order to capture the notion of a logically and cohesively organized body of knowledge. It may range from specific topics such as post-traumatic stress disorder to fields of study lacking clear-cut boundaries, such as research on terrorism or regenerative medicine. CiteSpace takes bibliographic information, especially citation information from the Web of Science, and generates interactive visualizations. Users can explore various patterns and trends uncovered from scientific publications, and develop a good understanding of scientific literature much more efficiently than they would from an unguided search through literature. The full text of many scientific publications can be accessed with a single click through the interactive visualization in CiteSpace. At the end of a session, CiteSpace can generate a summary report to summarize key information about the literature analyzed. This book is a practical guide not only on how to operate the tool but also on why the tool is designed and what implications of various patterns that require special attention. This book is written with a minimum amount of jargon. It uses everyday language to explain what people may learn from the writings of scholars of all kinds.
To most scientists, and to those interested in the sciences, understanding is the ultimate aim of scientific endeavor. In spite of this, understanding, and how it is achieved, has received little attention in recent philosophy of science. Scientific Understanding seeks to reverse this trend by providing original and in-depth accounts of the concept of understanding and its essential role in the scientific process. To this end, the chapters in this volume explore and develop three key topics: understanding and explanation, understanding and models, and understanding in scientific practice. Earlier philosophers, such as Carl Hempel, dismissed understanding as subjective and pragmatic. They believed that the essence of science was to be found in scientific theories and explanations. In Scientific Understanding, the contributors maintain that we must also consider the relation between explanations and the scientists who construct and use them. They focus on understanding as the cognitive state that is a goal of explanation and on the understanding of theories and models as a means to this end. The chapters in this book highlight the multifaceted nature of the process of scientific research. The contributors examine current uses of theory, models, simulations, and experiments to evaluate the degree to which these elements contribute to understanding. Their analyses pay due attention to the roles of intelligibility, tacit knowledge, and feelings of understanding. Furthermore, they investigate how understanding is obtained within diverse scientific disciplines and examine how the acquisition of understanding depends on specific contexts, the objects of study, and the stated aims of research.
It is widely acknowledged that a central aim of science is to achieve understanding of the world around us, and that possessing such understanding is highly important in our present-day society. But what does it mean to achieve this understanding? What precisely is scientific understanding? These are philosophical questions that have not yet received satisfactory answers. While there has been an ongoing debate about the nature of scientific explanation since Carl Hempel advanced his covering-law model in 1948, the related notion of understanding has been largely neglected, because most philosophers regarded understanding as merely a subjective by-product of objective explanations. By contrast, this book puts scientific understanding center stage. It is primarily a philosophical study, but also contains detailed historical case studies of scientific practice. In contrast to most existing studies in this area, it takes into account scientists' views and analyzes their role in scientific debate and development. The aim of Understanding Scientific Understanding is to develop and defend a philosophical theory of scientific understanding that can describe and explain the historical variation of criteria for understanding actually employed by scientists. The theory does justice to the insights of such famous physicists as Werner Heisenberg and Richard Feynman, while bringing much-needed conceptual rigor to their intuitions. The scope of the proposed account of understanding is the natural sciences: while the detailed case studies derive from physics, examples from other sciences are presented to illustrate its wider validity.
Carl G. Hempel exerted greater influence upon philosophers of science than any other figure during the 20th century. In this far-reaching collection, distinguished philosophers contribute valuable studies that illuminate and clarify the central problems to which Hempel was devoted. The essays enhance our understanding of the development of logical empiricism as the major intellectual influence for scientifically-oriented philosophers and philosophically-minded scientists of the 20th century.
"The Encyclopedia of Library and Information Science provides an outstanding resource in 33 published volumes with 2 helpful indexes. This thorough reference set--written by 1300 eminent, international experts--offers librarians, information/computer scientists, bibliographers, documentalists, systems analysts, and students, convenient access to the techniques and tools of both library and information science. Impeccably researched, cross referenced, alphabetized by subject, and generously illustrated, the Encyclopedia of Library and Information Science integrates the essential theoretical and practical information accumulating in this rapidly growing field."