Download Free Understanding Polymer Processing Book in PDF and EPUB Free Download. You can read online Understanding Polymer Processing and write the review.

This book provides the background needed to understand not only the wide field of polymer processing, but also the emerging technologies associated with the plastics industry in the 21st Century. The book combines practical engineering concepts with modeling of realistic polymer processes. It is divided into three sections that provide the reader sufficient knowledge of polymer materials, polymer processing, and modeling. Understanding Polymer Processing is intended for the person who is entering the plastics manufacturing industry and as a textbook for students taking an introductory course in polymer processing. This three-part book also serves as a guide to the practicing engineer when choosing a process, determining important parameters and factors during the early stages of process design, and when optimizing such a process. Practical examples illustrating basic concepts are presented throughout the book. Contents: o Part I - Polymeric Materials This section gives a general introduction to polymers, including mechanical behavior of polymers and melt rheology o Part II Polymer Processing The major polymer processes are introduced in this section, including extrusion, mixing, injection molding, thermoforming, blow molding, film blowing, and many others. o Part III Modeling This last section delivers the tools to allow the engineer to solve back-of-the-envelop polymer processing models. It includes dimensional analysis and scaling, transport phenomena in polymer processing, and modeling polymer processes
Engineering of polymers is not an easy exercise: with evolving technology, it often involves complex concepts and processes. This book is intended to provide the theoretical essentials: understanding of processes, a basis for the use of design software, and much more. The necessary physical concepts such as continuum mechanics, rheological behavior and measurement methods, and thermal science with its application to heating-cooling problems and implications for flow behavior are analyzed in detail. This knowledge is then applied to key processing methods, including single-screw extrusion and extrusion die flow, twin-screw extrusion and its applications, injection molding, calendering, and processes involving stretching. With many exercises with solutions offered throughout the book to reinforce the concepts presented, and extensive illustrations, this is an essential guide for mastering the art of plastics processing. Practical and didactic, Polymer Processing: Principles and Modeling is intended for engineers and technicians of the profession, as well as for advanced students in Polymer Science and Plastics Engineering.
Polymer Processing Instabilities: Control and Understanding offers a practical understanding of the various flows that occur during the processing of polymer melts. The book pays particular attention to flow instabilities that affect the rate of production and the methods used to prevent and eliminate flow instabilities in order to increase product
Fundamental concepts coupled with practical, step-by-step guidance With its emphasis on core principles, this text equips readers with the skills and knowledge to design the many processes needed to safely and successfully manufacture thermoplastic parts. The first half of the text sets forth the general theory and concepts underlying polymer processing, such as the viscoelastic response of polymeric fluids and diffusion and mass transfer. Next, the text explores specific practical aspects of polymer processing, including mixing, extrusion dies, and post-die processing. By addressing a broad range of design issues and methods, the authors demonstrate how to solve most common processing problems. This Second Edition of the highly acclaimed Polymer Processing has been thoroughly updated to reflect current polymer processing issues and practices. New areas of coverage include: Micro-injection molding to produce objects weighing a fraction of a gram, such as miniature gears and biomedical devices New chapter dedicated to the recycling of thermoplastics and the processing of renewable polymers Life-cycle assessment, a systematic method for determining whether recycling is appropriate and which form of recycling is optimal Rheology of polymers containing fibers Chapters feature problem sets, enabling readers to assess and reinforce their knowledge as they progress through the text. There are also special design problems throughout the text that reflect real-world polymer processing issues. A companion website features numerical subroutines as well as guidance for using MATLAB®, IMSL®, and Excel to solve the sample problems from the text. By providing both underlying theory and practical step-by-step guidance, Polymer Processing is recommended for students in chemical, mechanical, materials, and polymer engineering.
Polymer science is fundamentally interdisciplinary, yet specialists in one aspect, such as chemistry or processing, frequently encounter difficulties in understanding the effects of other disciplines on their own. This book describes clearly how polymer chemistry and polymer processing interact to affect polymer properties. As such, specialists in both disciplines can gain a deeper understanding of how these subjects underpin each other. Coverage includes step-by-step introductions to polymer processing technologies; details of fluid flow and heat transfer behaviour; shaping methods and physical processes during cooking and curing, and analyses of moulding and extrusion processes.
Covering a broad range of polymer science topics, Handbook of Polymer Synthesis, Characterization, and Processing provides polymer industry professionals and researchers in polymer science and technology with a single, comprehensive handbook summarizing all aspects involved in the polymer production chain. The handbook focuses on industrially important polymers, analytical techniques, and formulation methods, with chapters covering step-growth, radical, and co-polymerization, crosslinking and grafting, reaction engineering, advanced technology applications, including conjugated, dendritic, and nanomaterial polymers and emulsions, and characterization methods, including spectroscopy, light scattering, and microscopy.
"Offers detailed coverage of applied polymer processing--presenting a wide range of technologies and furnishing state-of-the-art data on polymer components, properties, and processibility. Reviews fundamental rheological concepts. Contains over 1600 bibliographic citations, some 450 equations, and over 400 tables, drawings, and photographs."
This book deals with the polymers, different methods of synthesis, and synthesis of composites, as well as the different techniques used for polymer characterization. Most of the world’s industries extract the anomalous properties of polymers to make excellent cost-effective materials. Because of this, the types of polymers, their processing, and the analysis of their various properties are very significant. Readers will gain a thorough knowledge about the processing of different types of polymers and composites made from them, as well as their various applications. Suitable for classroom use but especially important for researchers, this book addresses: Adhesion of amorphous polymers with vitrified bulk and surface glass transition Functionalized biopolymers and their applications A new synthesis of p-Cresol-Adipamide-Formaldehyde copolymer resin and its applications as an ion-changer Correlating performance of commercial viscosity modifiers for formulating shear stable industrial lubricants Synthesis of phthalonitrile polymers in ionic liquid and microwave media Studies on nanocomposite polymer electrolytes doped with Ca3(PO4)2 for lithium batteries
Polymers are ubiquitous and pervasive in industry, science, and technology. These giant molecules have great significance not only in terms of products such as plastics, films, elastomers, fibers, adhesives, and coatings but also less ob viously though none the less importantly in many leading industries (aerospace, electronics, automotive, biomedical, etc.). Well over half the chemists and chem ical engineers who graduate in the United States will at some time work in the polymer industries. If the professionals working with polymers in the other in dustries are taken into account, the overall number swells to a much greater total. It is obvious that knowledge and understanding of polymers is essential for any engineer or scientist whose professional activities involve them with these macromolecules. Not too long ago, formal education relating to polymers was very limited, indeed, almost nonexistent. Speaking from a personal viewpoint, I can recall my first job after completing my Ph.D. The job with E.I. Du Pont de Nemours dealt with polymers, an area in which I had no university training. There were no courses in polymers offered at my alma mater. My experience, incidentally, was the rule and not the exception.