Download Free Understanding Numbers In Elementary School Mathematics Book in PDF and EPUB Free Download. You can read online Understanding Numbers In Elementary School Mathematics and write the review.

This is a textbook for pre-service elementary school teachers and for current teachers who are taking professional development courses. By emphasizing the precision of mathematics, the exposition achieves a logical and coherent account of school mathematics at the appropriate level for the readership. Wu provides a comprehensive treatment of all the standard topics about numbers in the school mathematics curriculum: whole numbers, fractions, and rational numbers. Assuming no previous knowledge of mathematics, the presentation develops the basic facts about numbers from the beginning and thoroughly covers the subject matter for grades K through 7. Every single assertion is established in the context of elementary school mathematics in a manner that is completely consistent with the basic requirements of mathematics. While it is a textbook for pre-service elementary teachers, it is also a reference book that school teachers can refer to for explanations of well-known but hitherto unexplained facts. For example, the sometimes-puzzling concepts of percent, ratio, and rate are each given a treatment that is down to earth and devoid of mysticism. The fact that a negative times a negative is a positive is explained in a leisurely and comprehensible fashion.
"A multimedia professional learning resource"--Cover.
What is the relationship between fractions and rational numbers? Can you explain why the product of two fractions between 0 and 1 is less than either factor? How are rational numbers related to irrational numbers, which your students will study in later grades? How much do you know… and how much do you need to know? Helping your upper elementary school students develop a robust understanding of rational numbers requires that you understand this mathematics deeply. But what does that mean? This book focuses on essential knowledge for teachers about rational numbers. It is organised around four big ideas, supported by multiple smaller, interconnected ideas-essential understandings. Taking you beyond a simple introduction to rational numbers, the book will broaden and deepen your mathematical understanding of one of the most challenging topics for students and teachers. It will help you engage your students, anticipate their perplexities, avoid pitfalls and dispel misconceptions. You will also learn to develop appropriate tasks, techniques and tools for assessing students’ understanding of the topic. Focus on the ideas that you need to understand thoroughly to teach confidently.
How do composing and decomposing numbers connect with the properties of addition? Focus on the ideas that you need to thoroughly understand in order to teach with confidence. The mathematical content of this book focuses on essential knowledge for teachers about numbers and number systems. It is organised around one big idea and supported by smaller, more specific, interconnected ideas (essential understandings). Gaining this understanding is essential because numbers and numeration are building blocks for other mathematical concepts and for thinking quantitatively about the real-world. Essential Understanding series topics include: Number and Numeration for Grades Pre-K-2 Addition and Subtraction for Grades Pre-K-2 Geometry for Grades Pre-K-2 Reasoning and Proof for Grades Pre-K-8 Multiplication and Division for Grades 3-5 Rational Numbers for Grades 3-5 Algebraic Ideas and Readiness for Grades 3-5 Geometric Shapes and Solids for Grades 3-5 Ratio, Proportion and Proportionality for Grades 6-8 Expressions and Equations for Grades 6-8 Measurement for Grades 6-8 Data Analysis and Statistics for Grades 6-8 Function for Grades 9-12 Geometric Relationships for Grades 9-12 Reasoning and Proof for Grades 9-12 Statistics for Grades 9-12
Studies of teachers in the U.S. often document insufficient subject matter knowledge in mathematics. Yet, these studies give few examples of the knowledge teachers need to support teaching, particularly the kind of teaching demanded by recent reforms in mathematics education. Knowing and Teaching Elementary Mathematics describes the nature and development of the knowledge that elementary teachers need to become accomplished mathematics teachers, and suggests why such knowledge seems more common in China than in the United States, despite the fact that Chinese teachers have less formal education than their U.S. counterparts. The anniversary edition of this bestselling volume includes the original studies that compare U.S and Chinese elementary school teachers’ mathematical understanding and offers a powerful framework for grasping the mathematical content necessary to understand and develop the thinking of school children. Highlighting notable changes in the field and the author’s work, this new edition includes an updated preface, introduction, and key journal articles that frame and contextualize this seminal work.
'The exposition is exceptionally clear, and keeps its audience in mind: in the end, this is ‘a book for adults on mathematics for children’. ‘Adults’ here includes parents as well as teachers; in the author’s words, ‘Every parent is automatically an educator!’ There is considerable merit in including parents in the elementary mathematics conversation; it is a pleasure to see books like Kupferman’s that explain elementary math to adults. If our students, in their future role as teachers, can enlist parents as allies, everyone will benefit. These books are one good way to begin addressing that challenge.'MAA ReviewsThis book covers the elementary school mathematics curriculum common in most parts of the world. Its aim is to serve educators (teachers and parents) as a guide for teaching mathematics at elementary school level. The book focuses both on content knowledge and on pedagogical content knowledge. It bridges the gap between fundamental mathematical principles and good teaching practices. It also offers the reader a glimpse on how mathematicians perceive elementary mathematics and presents ideas for specific mathematical activities.Volume 2 focuses on content taught in the higher grades of elementary school. It covers the following topics: multiplication and division of multi-digit numbers, divisibility and primality, divisibility signs, sequences, fractions and their representations, and fraction arithmetic.The author is also a co-founder of Matific, an adaptive game-based teaching and learning tool for primary school mathematics. Independent studies have shown Matific to improve test scores, reduce maths anxiety, and increase motivation. Matific is available in 26 languages and aligned to mathematics curricula in 46 countries. Awards include Best Mathematics Instructional Solution, Best Game-Based Curriculum Solution and Best Educational App. For a trial, visit https://www.matific.com.
This easy-to-read summary is an excellent tool for introducing others to the messages contained in Principles and Standards.
Just as athletes stretch their muscles before every game and musicians play scales to keep their technique in tune, mathematical thinkers and problem solvers can benefit from daily warm-up exercises. Jessica Shumway has developed a series of routines designed to help young students internalize and deepen their facility with numbers. The daily use of these quick five-, ten-, or fifteen-minute experiences at the beginning of math class will help build students' number sense. Students with strong number sense understand numbers, ways to represent numbers, relationships among numbers, and number systems. They make reasonable estimates, compute fluently, use reasoning strategies (e.g., relate operations, such as addition and subtraction, to each other), and use visual models based on their number sense to solve problems. Students who never develop strong number sense will struggle with nearly all mathematical strands, from measurement and geometry to data and equations. In Number Sense Routines, Jessica shows that number sense can be taught to all students. Dozens of classroom examples -- including conversations among students engaging in number sense routines -- illustrate how the routines work, how children's number sense develops, and how to implement responsive routines. Additionally, teachers will gain a deeper understanding of the underlying math -- the big ideas, skills, and strategies children learn as they develop numerical literacy.
This is the second of three volumes that, together, give an exposition of the mathematics of grades 9–12 that is simultaneously mathematically correct and grade-level appropriate. The volumes are consistent with CCSSM (Common Core State Standards for Mathematics) and aim at presenting the mathematics of K–12 as a totally transparent subject. The first part of this volume is devoted to the study of standard algebra topics: quadratic functions, graphs of equations of degree 2 in two variables, polynomials, exponentials and logarithms, complex numbers and the fundamental theorem of algebra, and the binomial theorem. Having translations and the concept of similarity at our disposal enables us to clarify the study of quadratic functions by concentrating on their graphs, the same way the study of linear functions is greatly clarified by knowing that their graphs are lines. We also introduce the concept of formal algebra in the study of polynomials with complex coefficients. The last three chapters in this volume complete the systematic exposition of high school geometry that is consistent with CCSSM. These chapters treat the geometry of the triangle and the circle, ruler and compass constructions, and a general discussion of axiomatic systems, including non-Euclidean geometry and the celebrated work of Hilbert on the foundations. This book should be useful for current and future teachers of K–12 mathematics, as well as for some high school students and for education professionals.