Download Free Understanding Life Sciences Book in PDF and EPUB Free Download. You can read online Understanding Life Sciences and write the review.

Introduces the diverse roles metaphors play in the life sciences and highlights their significance for theory, communication, and education.
Designed for a one or two semester non-majors course in introductory biology taught at most two and four-year colleges. This course typically fulfills a general education requirement, and rather than emphasizing mastery of technical topics, it focuses on the understanding of biological ideas and concepts, how they relate to real life, and appreciating the scientific methods and thought processes. Given the authors' work in and dedication to science education, this text's writing style, pedagogy, and integrated support package are all based on classroom-tested teaching strategies and learning theory. The result is a learning program that enhances the effectiveness & efficiency of the teaching and learning experience in the introductory biology course like no other before it.
What are genes? What do genes do? These questions are not simple and straightforward to answer; at the same time, simplistic answers are quite prevalent and are taken for granted. This book aims to explain the origin of the gene concept, its various meanings both within and outside science, as well as to debunk the intuitive view of the existence of 'genes for' characteristics and disease. Drawing on contemporary research in genetics and genomics, as well as on ideas from history of science, philosophy of science, psychology and science education, it explains what genes are and what they can and cannot do. By presenting complex concepts and research in a comprehensible and rigorous manner, it examines the potential impact of research in genetics and genomics and how important genes actually are for our lives. Understanding Genes is an accessible and engaging introduction to genes for any interested reader.
Covering a range of metaphors from a diverse field of sciences, from cell and molecular biology to evolution, ecology, and biomedicine, Understanding Metaphors in the Life Sciences explores the positive and negative implications of the widespread use of metaphors in the biological and life sciences. From genetic codes, programs, and blueprints, to cell factories, survival of the fittest, the tree of life, selfish genes, and ecological niches, to genome editing with CRISPR's molecular scissors, metaphors are ubiquitous and vital components of the modern life sciences. But how exactly do metaphors help scientists to understand the objects they study? How can they mislead both scientists and laypeople alike? And what should we all understand about the implications of science's reliance on metaphorical speech and thought for objective knowledge and adequate public policy informed by science? This book will literally help you to better understand the metaphorical dimensions of science.
Astrobiology is an interdisciplinary field that asks profound scientific questions. How did life originate on the Earth? How has life persisted on the Earth for over three billion years? Is there life elsewhere in the Universe? What is the future of life on Earth? Astrobiology: Understanding Life in the Universe is an introductory text which explores the structure of living things, the formation of the elements for life in the Universe, the biological and geological history of the Earth and the habitability of other planets in our own Solar System and beyond. The book is designed to convey some of the major conceptual foundations in astrobiology that cut across a diversity of traditional fields including chemistry, biology, geosciences, physics and astronomy. It can be used to complement existing courses in these fields or as a stand-alone text for astrobiology courses. Readership: Undergraduates studying for degrees in earth or life sciences, physics, astronomy and related disciplines, as well as anyone with an interest in grasping some of the major concepts and ideas in astrobiology.
An accessible exploration of scientific explanation and how it leads to knowledge and understanding of the world.
Freshman and sophomore life sciences students respond well to the modeling approach to calculus, difference equations, and differential equations presented in this book. Examples of population dynamics, pharmacokinetics, and biologically relevant physical processes are introduced in Chapter 1, and these and other life sciences topics are developed throughout the text. The students should have studied algebra, geometry, and trigonometry, but may be life sciences students because they have not enjoyed their previous mathematics courses.
Valuation is a hot topic among life sciences professionals. There is no clear understanding on how to use the different valuation approaches and how to determine input parameters. Some do not value at all, arguing that it is not possible to get realistic and objective numbers out of it. Some claim it to be an art. In the following chapters we will provide the user with a concise val- tion manual, providing transparency and practical insight for all dealing with valuation in life sciences: project and portfolio managers, licensing executives, business developers, technology transfer managers, entrep- neurs, investors, and analysts. The purpose of the book is to explain how to apply discounted cash flow and real options valuation to life sciences p- jects, i.e. to license contracts, patents, and firms. We explain the fun- mentals and the pitfalls with case studies so that the reader is capable of performing the valuations on his own and repeat the theory in the exercises and case studies. The book is structured in five parts: In the first part, the introduction, we discuss the role of the players in the life sciences industry and their p- ticular interests. We describe why valuation is important to them, where they need it, and the current problems to it. The second part deals with the input parameters required for valuation in life sciences, i.e. success rates, costs, peak sales, and timelines.
The shelf-life of a product is critical in determining both its quality and profitability. This important collection reviews the key factors in determining shelf-life and how it can be measured. Part one examines the factors affecting shelf-life and spoilage, including individual chapters on the major types of food spoilage, the role of moisture and temperature, spoilage yeasts, the Maillard reaction and the factors underlying lipid oxidation. Part two addresses the best ways of measuring the shelf-life of foods, with chapters on modelling food spoilage, measuring and modelling glass transition, detecting spoilage yeasts, measuring lipid oxidation, the design and validation of shelf-life tests and the use of accelerated shelf-life tests. Understanding and measuring the shelf-life of food is an important reference for all those concerned with extending the shelf-life of food. Reviews the key factors in determining shelf-life and how they can be measured Examines the importance of the shelf-life of a product in determining its quality and profitability Brings together the leading international experts in the field