Download Free Understanding Geometry Book in PDF and EPUB Free Download. You can read online Understanding Geometry and write the review.

Harold Jacobs’s Geometry created a revolution in the approach to teaching this subject, one that gave rise to many ideas now seen in the NCTM Standards. Since its publication nearly one million students have used this legendary text. Suitable for either classroom use or self-paced study, it uses innovative discussions, cartoons, anecdotes, examples, and exercises that unfailingly capture and hold student interest. This edition is the Jacobs for a new generation. It has all the features that have kept the text in class by itself for nearly 3 decades, all in a thoroughly revised, full-color presentation that shows today’s students how fun geometry can be. The text remains proof-based although the presentation is in the less formal paragraph format. The approach focuses on guided discovery to help students develop geometric intuition.
Why does it matter whether we state definitions carefully when we all know what particular geometric figures look like? What does it mean to say that a reflection is a transformation—a function? How does the study of transformations and matrices in high school connect with later work with vector spaces in linear algebra? How much do you know… and how much do you need to know? Helping your students develop a robust understanding of geometry requires that you understand this mathematics deeply. But what does that mean? This book focuses on essential knowledge for teachers about geometry. It is organised around four big ideas, supported by multiple smaller, interconnected ideas—essential understandings. Taking you beyond a simple introduction to geometry, the book will broaden and deepen your mathematical understanding of one of the most challenging topics for students—and teachers. It will help you engage your students, anticipate their perplexities, avoid pitfalls, and dispel misconceptions. You will also learn to develop appropriate tasks, techniques, and tools for assessing students’ understanding of the topic. Focus on the ideas that you need to understand thoroughly to teach confidently. Move beyond the mathematics you expect your students to learn. Students who fail to get a solid grounding in pivotal concepts struggle in subsequent work in mathematics and related disciplines. By bringing a deeper understanding to your teaching, you can help students who don’t get it the first time by presenting the mathematics in multiple ways. The Essential Understanding Series addresses topics in school mathematics that are critical to the mathematical development of students but are often difficult to teach. Each book in the series gives an overview of the topic, highlights the differences between what teachers and students need to know, examines the big ideas and related essential understandings, reconsiders the ideas presented in light of connections with other mathematical ideas, and includes questions for readers’ reflection.
Why are there so many formulas for area and volume, and why do some of them look alike? Why does one quadrilateral have no special name while another has several, like square, rectangle, rhombus, and parallelogram—and why are all these names useful? How much do you know … and how much do you need to know? Helping your students develop a robust understanding of geometry requires that you understand this mathematics deeply. But what does that mean? This book focuses on essential knowledge for teachers about geometry. It is organized around four big ideas, supported by multiple smaller, interconnected ideas—essential understandings. Taking you beyond a simple introduction to geometry, the book will broaden and deepen your mathematical understanding of one of the most challenging topics for students—and teachers. It will help you engage your students, anticipate their perplexities, avoid pitfalls, and dispel misconceptions. You will also learn to develop appropriate tasks, techniques, and tools for assessing students’ understanding of the topic.
This volume reflects an appreciation of the interactive roles of subject matter, teacher, student, and technologies in designing classrooms that promote understanding of geometry and space. Although these elements of geometry education are mutually constituted, the book is organized to highlight, first, the editors' vision of a general geometry education; second, the development of student thinking in everyday and classroom contexts; and third, the role of technologies. Rather than looking to high school geometry as the locus--and all too often, the apex--of geometric reasoning, the contributors to this volume suggest that reasoning about space can and should be successfully integrated with other forms of mathematics, starting at the elementary level and continuing through high school. Reintegrating spatial reasoning into the mathematical mainstream--indeed, placing it at the core of K-12 mathematics environments that promote learning with understanding--will mean increased attention to problems in modeling, structure, and design and reinvigoration of traditional topics such as measure, dimension, and form. Further, the editors' position is that the teaching of geometry and spatial visualization in school should not be compressed into a characterization of Greek geometry, but should include attention to contributions to the mathematics of space that developed subsequent to those of the Greeks. This volume is essential reading for those involved in mathematics education at all levels, including university faculty, researchers, and graduate students.
More than a study of shapes and angles, geometry reflects an amalgamation of discoveries over time. This book not only provides readers with a comprehensive understanding of geometric shapes, axioms, and formulas, it presents the field’s brilliant minds—from Euclid to Wendelin Werner and many in between—whose works reflect a progression of mathematical thought throughout the centuries and have helped produce the various branches of geometry as they are known today. Detailed diagrams illustrate various concepts and help make geometry accessible to all.
How can you introduce terms from geometry and measurement so that your students’ vocabulary will enhance their understanding of concepts and definitions? What can you say to clarify the thinking of a student who claims that perimeter is always an even number? How does knowing what changes or stays the same when shapes are transformed help you support and extend your students’ understanding of shapes and the space that they occupy? How much do you know … and how much do you need to know? Helping your students develop a robust understanding of geometry and measurement requires that you understand fundamental statistical concepts deeply. But what does that mean? This book focuses on essential knowledge for mathematics teachers about geometry and measurement. It is organized around three big ideas, supported by multiple smaller, interconnected ideas—essential understandings. Taking you beyond a simple introduction to geometry and measurement, the book will broaden and deepen your understanding of one of the most challenging topics for students—and teachers. It will help you engage your students, anticipate their perplexities, avoid pitfalls, and dispel misconceptions. You will also learn to develop appropriate tasks, techniques, and tools for assessing students’ understanding of the topic. Focus on the ideas that you need to understand thoroughly to teach confidently.
This book offers a unique opportunity to understand the essence of one of the great thinkers of western civilization. A guided reading of Euclid's Elements leads to a critical discussion and rigorous modern treatment of Euclid's geometry and its more recent descendants, with complete proofs. Topics include the introduction of coordinates, the theory of area, history of the parallel postulate, the various non-Euclidean geometries, and the regular and semi-regular polyhedra.
This volume completes the English adaptation of a classical Russian textbook in elementary Euclidean geometry. The 1st volume subtitled "Book I. Planimetry" was published in 2006 (ISBN 0977985202). This 2nd volume (Book II. Stereometry) covers solid geometry, and contains a chapter on vectors, foundations, and introduction in non-Euclidean geometry added by the translator. The book intended for high-school and college students, and their teachers. Includes 317 exercises, index, and bibliography.
Presents an outline of Alexander Grothendieck's theories. This book discusses four main themes - descent theory, Hilbert and Quot schemes, the formal existence theorem, and the Picard scheme. It is suitable for those working in algebraic geometry.