Download Free Understanding Concurrency In Ada Book in PDF and EPUB Free Download. You can read online Understanding Concurrency In Ada and write the review.

A major feature of the Ada programming language is the facilities it provides for concurrent programming. Alan Burns and Andy Wellings provide here a thorough and self-contained account of concurrent programming in Ada, and so show users, even beginners, how to harness the full power of the whole language. After giving an overview of the non-concurrent features of Ada, the authors proceed to examine in detail the uses of concurrent programming and the inherent difficulties in providing inter-process communication. The Ada tasking model is then introduced; the way it deals with these and related matters is explained in a number of separate chapters, covering system programming, real-time issues, distribution, object-oriented programming and re-use. This is the first book which deals with concurrent features in the new Ada standard, and it offers practical advice to the programmer needing to use it for embedded systems, while those interested more broadly in the development of programming languages will find many otherwise inaccessible issues probed in depth. It will thus be of value to professional software engineers and advanced students of programming alike; indeed, every Ada programmer will find it essential reading and a primary reference work. For the paperback edition the authors have made revisions throughout the text, updating and correcting where appropriate.
This book provides a hands-on introduction to concurrent programming principles and techniques. Pascal FC (Functionally Concurrent), a teaching version of the Pascal language available from the authors, is used to illustrate the main techniques used in the concurrency models. Once programmers have grasped the concepts, a smooth transition is made to more advanced theoretical material.
Ada is the only ISO-standard, object-oriented, concurrent, real-time programming language. It is intended for use in large, long-lived applications where reliability and efficiency are essential, particularly real-time and embedded systems. In this book, Alan Burns and Andy Wellings give a thorough, self-contained account of how the Ada tasking model can be used to construct a wide range of concurrent and real-time systems. This is the only book that focuses on an in-depth discussion of the Ada tasking model. Following on from the authors' earlier title Concurrency in Ada, this book brings the discussion up to date to include the new Ada 2005 language and the recent advances in real-time programming techniques. It will be of value to software professionals and advanced students of programming alike: indeed every Ada programmer will find it essential reading and a primary reference work that will sit alongside the language reference manual.
This book presents the proceedings of the Ada-Europe International Conference, held in Dublin in 1990. The theme was the impact of technical and management issues in the software engineering economics of Ada, as well as technology transfer and training. Papers also assess the impact of Ada in specific projects.
Concurrent C is a superset of C that provides parallel programming facilities such as those for the declaring and creating processes, for process synchronization and interaction, and for process termination and abortion. Concurrent C was designed for the effective utilization of multiprocessors and multicomputers. Concurrent C, as a compile-time option, also works with C++, an object-oriented superset of C.
Illustrating the effect of concurrency on programs written in familiar languages, this text focuses on novel language abstractions that truly bring concurrency into the language and aid analysis and compilation tools in generating efficient, correct programs. It also explains the complexity involved in taking advantage of concurrency with regard to program correctness and performance. The book describes the historical development of current programming languages and the common threads that exist among them. It also contains several chapters on design patterns for parallel programming and includes quick reference guides to OpenMP, Erlang, and Cilk. Ancillary materials are available on the book's website.
The control-flow issues presented in this textbook are extremely relevant in modern computer languages and programming styles. In addition to the basic control-flow mechanisms, virtually all new computer languages provide some form of exceptional control flow to support robust programming introduced in this textbook. Also, concurrency capabilities are appearing with increasing frequency in both new and old programming languages, and are covered in this book. Understanding Control Flow: With Concurrent Programming Using μC++ starts with looping, and works through each of the basic control-flow concepts, examining why each is fundamental and where it is useful. Time is spent on each concept according to its level of difficulty. Examples and exercises are also provided in this textbook. New programming methodologies are requiring new forms of control flow, and new programming languages are supporting these methodologies with new control structures, such as the concurrency constructs discussed in this textbook. Most computers now contain multi-threading and multi-cores, while multiple processors and distributed systems are ubiquitous — all of which require advanced programming methodologies to take full advantage of the available parallelism summarized in this textbook. Advance forms of control flow are becoming basic programming skills needed by all programmers, not just graduate students working in the operating systems or database disciplines. This textbook is designed for advanced-level students studying computer science and engineering. Professionals and researchers working in this field, specifically programming and software engineering, will find this book useful as a reference.
Principles of Concurrent and Distributed Programming provides an introduction to concurrent programming focusing on general principles and not on specific systems. Software today is inherently concurrent or distributed - from event-based GUI designs to operating and real-time systems to Internet applications. This edition is an introduction to concurrency and examines the growing importance of concurrency constructs embedded in programming languages and of formal methods such as model checking.