Download Free Undergraduate Mathematics For The Life Sciences Book in PDF and EPUB Free Download. You can read online Undergraduate Mathematics For The Life Sciences and write the review.

An accessible undergraduate textbook on the essential math concepts used in the life sciences The life sciences deal with a vast array of problems at different spatial, temporal, and organizational scales. The mathematics necessary to describe, model, and analyze these problems is similarly diverse, incorporating quantitative techniques that are rarely taught in standard undergraduate courses. This textbook provides an accessible introduction to these critical mathematical concepts, linking them to biological observation and theory while also presenting the computational tools needed to address problems not readily investigated using mathematics alone. Proven in the classroom and requiring only a background in high school math, Mathematics for the Life Sciences doesn't just focus on calculus as do most other textbooks on the subject. It covers deterministic methods and those that incorporate uncertainty, problems in discrete and continuous time, probability, graphing and data analysis, matrix modeling, difference equations, differential equations, and much more. The book uses MATLAB throughout, explaining how to use it, write code, and connect models to data in examples chosen from across the life sciences. Provides undergraduate life science students with a succinct overview of major mathematical concepts that are essential for modern biology Covers all the major quantitative concepts that national reports have identified as the ideal components of an entry-level course for life science students Provides good background for the MCAT, which now includes data-based and statistical reasoning Explicitly links data and math modeling Includes end-of-chapter homework problems, end-of-unit student projects, and select answers to homework problems Uses MATLAB throughout, and MATLAB m-files with an R supplement are available online Prepares students to read with comprehension the growing quantitative literature across the life sciences A solutions manual for professors and an illustration package is available
Provides a wide range of mathematical models currently used in the life sciences Each model is thoroughly explained and illustrated by example Includes three appendices to allow for independent reading
A few decades ago mathematics played a modest role in life sciences. Today, however, a great variety of mathematical methods is applied in biology and medicine. Practically every mathematical procedure that is useful in physics, chemistry, engineering, and economics has also found an important application in the life sciences. The past and present training of life scientists does by no means reflect this development. However, the impact ofthe fast growing number of applications of mathematical methods makes it indispensable that students in the life sciences are offered a basic training in mathematics, both on the undergraduate and the graduate level. This book is primarily designed as a textbook for an introductory course. Life scientists may also use it as a reference to find mathematical methods suitable to their research problems. Moreover, the book should be appropriate for self-teaching. It will also be a guide for teachers. Numerous references are included to assist the reader in his search for the pertinent literature.
​ ​​ Mathematics for the Life Sciences provides present and future biologists with the mathematical concepts and tools needed to understand and use mathematical models and read advanced mathematical biology books. It presents mathematics in biological contexts, focusing on the central mathematical ideas, and providing detailed explanations. The author assumes no mathematics background beyond algebra and precalculus. Calculus is presented as a one-chapter primer that is suitable for readers who have not studied the subject before, as well as readers who have taken a calculus course and need a review. This primer is followed by a novel chapter on mathematical modeling that begins with discussions of biological data and the basic principles of modeling. The remainder of the chapter introduces the reader to topics in mechanistic modeling (deriving models from biological assumptions) and empirical modeling (using data to parameterize and select models). The modeling chapter contains a thorough treatment of key ideas and techniques that are often neglected in mathematics books. It also provides the reader with a sophisticated viewpoint and the essential background needed to make full use of the remainder of the book, which includes two chapters on probability and its applications to inferential statistics and three chapters on discrete and continuous dynamical systems. The biological content of the book is self-contained and includes many basic biology topics such as the genetic code, Mendelian genetics, population dynamics, predator-prey relationships, epidemiology, and immunology. The large number of problem sets include some drill problems along with a large number of case studies. The latter are divided into step-by-step problems and sorted into the appropriate section, allowing readers to gradually develop complete investigations from understanding the biological assumptions to a complete analysis.
There is a gap between the extensive mathematics background that is beneficial to biologists and the minimal mathematics background biology students acquire in their courses. The result is an undergraduate education in biology with very little quantitative content. New mathematics courses must be devised with the needs of biology students in mind. In this volume, authors from a variety of institutions address some of the problems involved in reforming mathematics curricula for biology students. The problems are sorted into three themes: Models, Processes, and Directions. It is difficult for mathematicians to generate curriculum ideas for the training of biologists so a number of the curriculum models that have been introduced at various institutions comprise the Models section. Processes deals with taking that great course and making sure it is institutionalized in both the biology department (as a requirement) and in the mathematics department (as a course that will live on even if the creator of the course is no longer on the faculty). Directions looks to the future, with each paper laying out a case for pedagogical developments that the authors would like to see.
This self-contained introduction to the fast-growing field of Mathematical Biology is written for students with a mathematical background. It sets the subject in a historical context and guides the reader towards questions of current research interest. A broad range of topics is covered including: Population dynamics, Infectious diseases, Population genetics and evolution, Dispersal, Molecular and cellular biology, Pattern formation, and Cancer modelling. Particular attention is paid to situations where the simple assumptions of homogenity made in early models break down and the process of mathematical modelling is seen in action.
This is the only book that teaches all aspects of modern mathematical modeling and that is specifically designed to introduce undergraduate students to problem solving in the context of biology. Included is an integrated package of theoretical modeling and analysis tools, computational modeling techniques, and parameter estimation and model validation methods, with a focus on integrating analytical and computational tools in the modeling of biological processes. Divided into three parts, it covers basic analytical modeling techniques; introduces computational tools used in the modeling of biological problems; and includes various problems from epidemiology, ecology, and physiology. All chapters include realistic biological examples, including many exercises related to biological questions. In addition, 25 open-ended research projects are provided, suitable for students. An accompanying Web site contains solutions and a tutorial for the implementation of the computational modeling techniques. Calculations can be done in modern computing languages such as Maple, Mathematica, and MATLAB?.
Mathematics for Biological Scientists is a new undergraduate textbook which covers the mathematics necessary for biology students to understand, interpret and discuss biological questions. The book's twelve chapters are organized into four themes. The first theme covers the basic concepts of mathematics in biology, discussing the mathematics used in biological quantities, processes and structures. The second theme, calculus, extends the language of mathematics to describe change. The third theme is probability and statistics, where the uncertainty and variation encountered in real biological data is described. The fourth theme is explored briefly in the final chapter of the book, which is to show how the 'tools' developed in the first few chapters are used within biology to develop models of biological processes. Mathematics for Biological Scientists fully integrates mathematics and biology with the use of colour illustrations and photographs to provide an engaging and informative approach to the subject of mathematics and statistics within biological science.
This book develops the mathematical tools essential for students in the life sciences to describe interacting systems and predict their behavior. From predator-prey populations in an ecosystem, to hormone regulation within the body, the natural world abounds in dynamical systems that affect us profoundly. Complex feedback relations and counter-intuitive responses are common in nature; this book develops the quantitative skills needed to explore these interactions. Differential equations are the natural mathematical tool for quantifying change, and are the driving force throughout this book. The use of Euler’s method makes nonlinear examples tractable and accessible to a broad spectrum of early-stage undergraduates, thus providing a practical alternative to the procedural approach of a traditional Calculus curriculum. Tools are developed within numerous, relevant examples, with an emphasis on the construction, evaluation, and interpretation of mathematical models throughout. Encountering these concepts in context, students learn not only quantitative techniques, but how to bridge between biological and mathematical ways of thinking. Examples range broadly, exploring the dynamics of neurons and the immune system, through to population dynamics and the Google PageRank algorithm. Each scenario relies only on an interest in the natural world; no biological expertise is assumed of student or instructor. Building on a single prerequisite of Precalculus, the book suits a two-quarter sequence for first or second year undergraduates, and meets the mathematical requirements of medical school entry. The later material provides opportunities for more advanced students in both mathematics and life sciences to revisit theoretical knowledge in a rich, real-world framework. In all cases, the focus is clear: how does the math help us understand the science?
The aim of this book is to introduce the subject of mathematical modeling in the life sciences. It is intended for students of mathematics, the physical sciences, and engineering who are curious about biology. Additionally, it will be useful to students of the life sciences and medicine who are unsatisfied with mere description and who seek an understanding of biological mechanism and dynamics through the use of mathematics. The book will be particularly useful to premedical students, because it will introduce them not only to a collection of mathematical methods but also to an assortment of phenomena involving genetics, epidemics, and the physiology of the heart, lung, and kidney. Because of its introductory character, mathematical prerequisites are kept to a minimum; they involve only what is usually covered in the first semester of a calculus sequence. The authors have drawn on their extensive experience as modelers to select examples which are simple enough to be understood at this elementary level and yet realistic enough to capture the essence of significant biological phenomena drawn from the areas of population dynamics and physiology. Because the models presented are realistic, the book can serve not only as an introduction to mathematical methods but also as a mathematical introduction to the biological material itself. For the student, who enjoys mathematics, such an introduction will be far more stimulating and satisfying than the purely descriptive approach that is traditional in the biological sciences.