Download Free Unconventional Computation And Natural Computation Book in PDF and EPUB Free Download. You can read online Unconventional Computation And Natural Computation and write the review.

The unconventional computing is a niche for interdisciplinary science, cross-bred of computer science, physics, mathematics, chemistry, electronic engineering, biology, material science and nanotechnology. The aims of this book are to uncover and exploit principles and mechanisms of information processing in and functional properties of physical, chemical and living systems to develop efficient algorithms, design optimal architectures and manufacture working prototypes of future and emergent computing devices. This first volume presents theoretical foundations of the future and emergent computing paradigms and architectures. The topics covered are computability, (non-)universality and complexity of computation; physics of computation, analog and quantum computing; reversible and asynchronous devices; cellular automata and other mathematical machines; P-systems and cellular computing; infinity and spatial computation; chemical and reservoir computing. The book is the encyclopedia, the first ever complete authoritative account, of the theoretical and experimental findings in the unconventional computing written by the world leaders in the field. All chapters are self-contains, no specialist background is required to appreciate ideas, findings, constructs and designs presented. This treatise in unconventional computing appeals to readers from all walks of life, from high-school pupils to university professors, from mathematicians, computers scientists and engineers to chemists and biologists.
This book constitutes the proceedings of the 17th International Conference on Unconventional Computation and Natural Computation, UCNC 2018, held in Fontainebleau, France, in June 2018. The 15 full papers presented were carefully reviewed and selected from 22 submissions. The paper cover topics such as hypercomputation; chaos and dynamical systems based computing; granular, fuzzy and rough computing; mechanical computing; cellular, evolutionary, molecular, neural, and quantum computing; membrane computing; amorphous computing, swarm intelligence; artificial immune systems; physics of computation; chemical computation; evolving hardware; the computational nature of self-assembly, developmental processes, bacterial communication, and brain processes.
This book constitutes the proceedings of the 18th International Conference on Unconventional Computation and Natural Computation, UCNC 2019, held in Tokyo, Japan, in June 2019. The 19 full papers presented were carefully reviewed and selected from 32 submissions. The papers cover topics such as hypercomputation; chaos and dynamical systems based computing; granular, fuzzy and rough computing; mechanical computing; cellular, evolutionary, molecular, neural, and quantum computing; membrane computing; amorphous computing, swarm intelligence; artificial immune systems; physics of computation; chemical computation; evolving hardware; the computational nature of self-assembly, developmental processes, bacterial communication, and brain processes.
This book constitutes the refereed proceedings of the Third International Conference on Unconventional Models of Computation, UMC 2002, held in Kobe, Japan in October 2002.The 18 revised full papers presented together with eight invited full papers were carefully reviewed and selected from 36 submissions. All major areas of unconventinal computing models are covered, especially quantum computing, DNA computing, membrane computing, cellular computing, and possibilities to break Turing's barrier. The authors address theoretical aspects, practical implementations, as well as philosophical reflections.
Unconventional computing is the quest for groundbreaking new algorithms and computing architectures based on and inspired by the principles of information processing in physical, chemical and biological systems. The timely scientific contributions in this book include cutting-edge theoretical work on quantum and kinematic Turing machines, computational complexity of physical systems, molecular and chemical computation, processing incomplete information, physical hypercomputation, automata networks and swarms. They are nicely complemented by recent results on experimental implementations of logical and arithmetical circuits in a domino substrate, DNA computers, and self-assembly. The book supports interdisciplinary research in the field of future computing and contributes toward developing a common interface between computer science, biology, mathematics, chemistry, electronics engineering, and physics.
This book constitutes the refereed proceedings of the 12th International Conference on Unconventional Computation and Natural Computation, UCNC 2013, held in Milan, Italy, in July 2013. The 30 papers (28 full papers, 8 poster papers, and 2 invited papers) were carefully reviewed and selected from 46 submissions. The topics of the volume include: quantum, cellular, molecular, neural, DNA, membrane, and evolutionary computing; cellular automata; computation based on chaos and dynamical systems; massive parallel computation; collective intelligence; computation based on physical principles such as relativistic, optical, spatial, collision-based computing; amorphous computing; physarum computing; hypercomputation; fuzzy and rough computing; swarm intelligence; artificial immune systems; physics of computation; chemical computation; evolving hardware; the computational nature of self-assembly, developmental processes, bacterial communication, and brain processes.
This book is concerned with computing in materio: that is, unconventional computing performed by directly harnessing the physical properties of materials. It offers an overview of the field, covering four main areas of interest: theory, practice, applications and implications. Each chapter synthesizes current understanding by deliberately bringing together researchers across a collection of related research projects. The book is useful for graduate students, researchers in the field, and the general scientific reader who is interested in inherently interdisciplinary research at the intersections of computer science, biology, chemistry, physics, engineering and mathematics.
This book constitutes the refereed proceedings of the 15th International Conference on Unconventional Computation and Natural Computation, UCNC 2016, held in Manchester, UK, in July 2016. The 15 revised full papers presented together with 5 invited papers were carefully reviewed and selected from 30 submissions. The papers cover a wide range of topics including molecular, cellular, quantum, optical and chaos computing; cellular automata; neural and evolutionary computation; artificial immune systems; Ant algorithms and swarm intelligence; amorphous computing; membrane computing; computational systems biology and computational neuroscience; and synthetic biology.
This book constitutes the refereed proceedings of the 13th International Conference on Unconventional Computation and Natural Computation, UCNC 2014, held in London, ON, Canada, in July 2014. The 31 revised full papers were carefully reviewed and selected from 79 submissions. The papers cover a wide range of topics including among others molecular, quantum, optical and chaos computing as well as neural computation, evolutionary computation, swarm intelligence and computational neuroscience.