Download Free Unconformity Related Hydrocarbons In Sedimentary Sequences Book in PDF and EPUB Free Download. You can read online Unconformity Related Hydrocarbons In Sedimentary Sequences and write the review.

The wide distribution of dolomite rocks in North American, Middle- and Far-Eastern hydrocarbon reservoirs is reason enough for their intensive study. In this volume dolomite enthusiasts review progress and define the current boundaries of dolomite research, related particularly to the importance of these rocks as reservoirs.
This book explains in detail how to use oil and gas show information to find hydrocarbons. It covers the basics of exploration methodologies, drilling and mud systems, cuttings and mud gas show evaluation, fundamental log analysis, the pitfalls of log-calculated water saturations, and a complete overview of the use of pressures to understand traps and migration, hydrodynamics, and seal and reservoir quantification using capillary pressure. Also included are techniques for quickly generating pseudo-capillary pressure curves from simple porosity/permeability data, with examples of how to build spreadsheets in Excel, and a complete treatment of fluid inclusion analysis and fluid inclusion stratigraphy to map migration pathways. In addition, petroleum systems modeling and fundamental source rock geochemistry are discussed in depth, particularly in the context of unconventional source rock evaluation and screening tools for entering new plays. The book is heavily illustrated with numerous examples and case histories from the author’s 37 years of exploration experience. The topics covered in this book will give any young geoscientist a quick start on a successful career and serve as a refresher for the more experienced explorer.
Tidal deposits have been a specific research topic for about 40 years, and whilst this has resulted in a proliferation of papers in scientific journals, there have only been a few book-length syntheses. Over the years, tidal sedimentology has been reinforced by fluid mechanics and numerical modelling but has remained rooted in facies and stratigraphic studies. Recent developments in tidal sedimentology lean toward a more quantitative assessment of the imprint of tides in the facies record of intertidal and shallow subtidal areas. They highlight the increasing relevance of tidal deposits studies, from high resolution subsurface reservoir geology to climate change and sea-level rise. This volume gathers 17 contributions to the Tidalites 2012 congress held in Caen, France. It reflects current advances in the sedimentology and stratigraphy of tidal deposits, in both ancient and modern environments. It shows the current diversity of this field of research, through a wide spectrum of methods including remote sensing, in-situ hydrodynamical measurements, and ichnology, in addition to classic field studies and petrography.
The objective of the Ferron Sandstone project was to develop a comprehensive, interdisciplinary, quantitative characterization of a fluvial-deltaic reservoir to allow realistic inter-well and reservoir-scale models to be developed for improved oil-field development in similar reservoirs world-wide. Quantitative geological and petrophysical information on the Cretaceous Ferron Sandstone in east-central Utah was collected. Both new and existing data were integrated into a three-dimensional model of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Simulation results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. This 471-page report describes the geological and petrophysical characteristics of the fluvial-deltaic Upper Cretaceous Ferron Sandstone. The report includes Ferron facies analysis, regional sequence stratigraphy, evaluation of three case-study areas, geostatistics, and a 3-D oil and gas reservoir simulation of the Ferron.
Reservoir quality controls the storage, distribution, and flow of fluids within a reservoir. Porosity and permeability are key parameters that are readily measured on rock samples and from well logs; with calibration, porosity can be mapped from 3D seismic surveys. If core material is obtained from a well and porosity and permeability measurements are made on the core, the values can be compared with porosity logs and a permeability log can be developed. Although “flow units” can be determined using a suite of geologic and petrophysical parameters, method uses only the three easily obtained wellbore parameters of porosity, permeability, and thickness to calculate flow units in terms of their capacity to store and transmit fluids within the reservoir. Three-dimensional flow-unit models of a reservoir can be used for reservoir fluid-flow and performance simulation. Flow units can be upscaled, as needed, to meet the requirements of computing time and capability. Capillary properties of a rock also affect the storage and flow of fluids through the rock. Capillary properties are routinely measured and used to determine fluid saturations, height of the oil column above the free water level, and maximum height of the column that can be retained by a reservoir topseal. These are very important parameters for characterizing a reservoir for development and management purposes. Values of porosity, permeability, and capillarity will vary not only according to the nature of rocks comprising a reservoir but also according to the way in which the values were obtained. Caution is the key to interpreting laboratory-derived data, and it is worth knowing just how and where on a rock sample the measurements were made prior to using them for reservoir characterization. Also, upscaling or averaging values such as Sw can provide misleading results, particularly in thin-bedded stratigraphic intervals. The greater the amount of upscaling, the less realistic the reservoir geologic model becomes!
Comprehensive discussion of the role of evaporites in hydrocarbon generation and trapping Excellent introduction in the field
This book Understanding Pore Space through Log Measurements deals with porosity, insight on pore shape connectedness, grain size, grain aspect ratio, permeability etc. Most of the published literature is focused on permeability from log measurements and log analytic techniques for porosity and fluid saturation determination. On the other hand, this book aims at looking at porosity distribution, pore shape, and pore connectedness using log measurements and thus bringing pore space into focus. A compilation of available knowledge from this perspective will lead the reader to better understanding of reservoir characterization takeaways, which exploration and exploitation managers and workers will be looking for. - Offers insight into influence of pore attributes on macroscopic pore space descriptors - Grain characters that influence the properties of the pore space - Guides on how to best model the inversion of log data into these attributes