Download Free Uncommon Mathematical Excursions Book in PDF and EPUB Free Download. You can read online Uncommon Mathematical Excursions and write the review.

An exploration of mathematical style through 99 different proofs of the same theorem This book offers a multifaceted perspective on mathematics by demonstrating 99 different proofs of the same theorem. Each chapter solves an otherwise unremarkable equation in distinct historical, formal, and imaginative styles that range from Medieval, Topological, and Doggerel to Chromatic, Electrostatic, and Psychedelic. With a rare blend of humor and scholarly aplomb, Philip Ording weaves these variations into an accessible and wide-ranging narrative on the nature and practice of mathematics. Inspired by the experiments of the Paris-based writing group known as the Oulipo—whose members included Raymond Queneau, Italo Calvino, and Marcel Duchamp—Ording explores new ways to examine the aesthetic possibilities of mathematical activity. 99 Variations on a Proof is a mathematical take on Queneau’s Exercises in Style, a collection of 99 retellings of the same story, and it draws unexpected connections to everything from mysticism and technology to architecture and sign language. Through diagrams, found material, and other imagery, Ording illustrates the flexibility and creative potential of mathematics despite its reputation for precision and rigor. Readers will gain not only a bird’s-eye view of the discipline and its major branches but also new insights into its historical, philosophical, and cultural nuances. Readers, no matter their level of expertise, will discover in these proofs and accompanying commentary surprising new aspects of the mathematical landscape.
The most comprehensive math root dictionary ever published. Outstanding Academic Title, Choice Do you ever wonder about the origins of mathematical terms such as ergodic, biholomorphic, and strophoid? Here Anthony Lo Bello explains the roots of these and better-known words like asymmetric, gradient, and average. He provides Greek, Latin, and Arabic text in its original form to enhance each explanation. This sophisticated, one-of-a-kind reference for mathematicians and word lovers is based on decades of the author's painstaking research and work. Origins of Mathematical Words supplies definitions for words such as conchoid (a shell-shaped curve derived from the Greek noun for "mussel") and zenith (Arabic for "way overhead"), as well as approximation (from the Latin proximus, meaning "nearest"). These and hundreds of other terms wait to be discovered within the pages of this mathematical and etymological treasure chest.
Solid geometry is the traditional name for what we call today the geometry of three-dimensional Euclidean space. Courses in solid geometry have largely disappeared from American high schools and colleges. The authors are convinced that a mathematical exploration of three-dimensional geometry merits some attention in today’s curriculum. A Mathematical Space Odyssey: Solid Geometry in the 21st Century is devoted to presenting techniques for proving a variety of mathematical results in three-dimensional space, techniques that may improve one’s ability to think visually. Special attention is given to the classical icons of solid geometry (prisms, pyramids, platonic solids, cones, cylinders, and spheres) and many new and classical results: Cavalieri’s principle, Commandino’s theorem, de Gua’s theorem, Prince Rupert’s cube, the Menger sponge, the Schwarz lantern, Euler’s rotation theorem, the Loomis-Whitney inequality, Pythagorean theorems in three dimensions, etc. The authors devote a chapter to each of the following basic techniques for exploring space and proving theorems: enumeration, representation, dissection, plane sections, intersection, iteration, motion, projection, and folding and unfolding. In addition to many figures illustrating theorems and their proofs, a selection of photographs of three-dimensional works of art and architecture are included. Each chapter includes a selection of Challenges for the reader to explore further properties and applications. It concludes with solutions to all the Challenges in the book, references, and a complete index. Readers should be familiar with high school algebra, plane and analytic geometry, and trigonometry. While brief appearances of calculus do occur, no knowledge of calculus is necessary to enjoy this book.
The authors present twenty icons of mathematics, that is, geometrical shapes such as the right triangle, the Venn diagram, and the yang and yin symbol and explore mathematical results associated with them. As with their previous books (Charming Proofs, When Less is More, Math Made Visual) proofs are visual whenever possible. The results require no more than high-school mathematics to appreciate and many of them will be new even to experienced readers. Besides theorems and proofs, the book contains many illustrations and it gives connections of the icons to the world outside of mathematics. There are also problems at the end of each chapter, with solutions provided in an appendix. The book could be used by students in courses in problem solving, mathematical reasoning, or mathematics for the liberal arts. It could also be read with pleasure by professional mathematicians, as it was by the members of the Dolciani editorial board, who unanimously recommend its publication.
This book includes 18 peer-reviewed papers from nine countries, originally presented in a shorter form at TSG 25 The Role of History of Mathematics in Mathematics Education, as part of ICME-13 during. It also features an introductory chapter, by its co-editors, on the structure and main points of the book with an outline of recent developments in exploring the role of history and epistemology in mathematics education. It serves as a valuable contribution in this domain, by making reports on recent developments in this field available to the international educational community, with a special focus on relevant research results since 2000. The 18 chapters of the book are divided into five interrelated parts that underlie the central issues of research in this domain: 1. Theoretical and conceptual frameworks for integrating history and epistemology in mathematics in mathematics education; 2. Courses and didactical material: Design, implementation and evaluation; 3. Empirical investigations on implementing history and epistemology in mathematics education; 4. Original historical sources in teaching and learning of and about mathematics; 5. History and epistemology of mathematics: Interdisciplinary teaching and sociocultural aspects. This book covers all levels of education, from primary school to tertiary education, with a particular focus on teacher education. Additionally, each chapter refers to and/or is based on empirical research, in order to support, illuminate, clarify and evaluate key issues, main questions, and conjectured theses raised by the authors or in the literature on the basis of historical-epistemological or didactical-cognitive arguments.
An accessible compendium of essays on the broad theme of mathematics and sports.