Download Free Uncertainty In Intelligent Systems Book in PDF and EPUB Free Download. You can read online Uncertainty In Intelligent Systems and write the review.

This book develops a framework that shows how uncertainty in Artificial Intelligence (AI) expands and generalizes traditional AI. It explores the uncertainties of knowledge and intelligence. The authors focus on the importance of natural language – the carrier of knowledge and intelligence, and introduce efficient physical methods for data mining amd control. In this new edition, we have more in-depth description of the models and methods, of which the mathematical properties are proved strictly which make these theories and methods more complete. The authors also highlight their latest research results.
Probabilistic Reasoning in Intelligent Systems is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty. The author provides a coherent explication of probability as a language for reasoning with partial belief and offers a unifying perspective on other AI approaches to uncertainty, such as the Dempster-Shafer formalism, truth maintenance systems, and nonmonotonic logic. The author distinguishes syntactic and semantic approaches to uncertainty--and offers techniques, based on belief networks, that provide a mechanism for making semantics-based systems operational. Specifically, network-propagation techniques serve as a mechanism for combining the theoretical coherence of probability theory with modern demands of reasoning-systems technology: modular declarative inputs, conceptually meaningful inferences, and parallel distributed computation. Application areas include diagnosis, forecasting, image interpretation, multi-sensor fusion, decision support systems, plan recognition, planning, speech recognition--in short, almost every task requiring that conclusions be drawn from uncertain clues and incomplete information. Probabilistic Reasoning in Intelligent Systems will be of special interest to scholars and researchers in AI, decision theory, statistics, logic, philosophy, cognitive psychology, and the management sciences. Professionals in the areas of knowledge-based systems, operations research, engineering, and statistics will find theoretical and computational tools of immediate practical use. The book can also be used as an excellent text for graduate-level courses in AI, operations research, or applied probability.
The primary aim of this monograph is to provide a formal framework for the representation and management of uncertainty and vagueness in the field of artificial intelligence. It puts particular emphasis on a thorough analysis of these phenomena and on the development of sound mathematical modeling approaches. Beyond this theoretical basis the scope of the book includes also implementational aspects and a valuation of existing models and systems. The fundamental ambition of this book is to show that vagueness and un certainty can be handled adequately by using measure-theoretic methods. The presentation of applicable knowledge representation formalisms and reasoning algorithms substantiates the claim that efficiency requirements do not necessar ily require renunciation of an uncompromising mathematical modeling. These results are used to evaluate systems based on probabilistic methods as well as on non-standard concepts such as certainty factors, fuzzy sets or belief functions. The book is intended to be self-contained and addresses researchers and practioneers in the field of knowledge based systems. It is in particular suit able as a textbook for graduate-level students in AI, operations research and applied probability. A solid mathematical background is necessary for reading this book. Essential parts of the material have been the subject of courses given by the first author for students of computer science and mathematics held since 1984 at the University in Braunschweig.
This book contains the papers presented at the 2nd IPMU Conference, held in Urbino (Italy), on July 4-7, 1988. The theme of the conference, Management of Uncertainty and Approximate Reasoning, is at the heart of many knowledge-based systems and a number of approaches have been developed for representing these types of information. The proceedings of the conference provide, on one hand, the opportunity for researchers to have a comprehensive view of recent results and, on the other, bring to the attention of a broader community the potential impact of developments in this area for future generation knowledge-based systems. The main topics are the following: frameworks for knowledge-based systems: representation scheme, neural networks, parallel reasoning schemes; reasoning techniques under uncertainty: non-monotonic and default reasoning, evidence theory, fuzzy sets, possibility theory, Bayesian inference, approximate reasoning; information theoretical approaches; knowledge acquisition and automated learning.
Intelligent systems are necessary to handle modern computer-based technologies managing information and knowledge. This book discusses the theories required to help provide solutions to difficult problems in the construction of intelligent systems. Particular attention is paid to situations in which the available information and data may be imprecise, uncertain, incomplete or of a linguistic nature. The main aspects of clustering, classification, summarization, decision making and systems modeling are also addressed. Topics covered in the book include fundamental issues in uncertainty, the rapidly emerging discipline of information aggregation, neural networks, Bayesian networks and other network methods, as well as logic-based systems.
The third edition of this bestseller examines the principles of artificial intelligence and their application to engineering and science, as well as techniques for developing intelligent systems to solve practical problems. Covering the full spectrum of intelligent systems techniques, it incorporates knowledge-based systems, computational intelligence, and their hybrids. Using clear and concise language, Intelligent Systems for Engineers and Scientists, Third Edition features updates and improvements throughout all chapters. It includes expanded and separated chapters on genetic algorithms and single-candidate optimization techniques, while the chapter on neural networks now covers spiking networks and a range of recurrent networks. The book also provides extended coverage of fuzzy logic, including type-2 and fuzzy control systems. Example programs using rules and uncertainty are presented in an industry-standard format, so that you can run them yourself. The first part of the book describes key techniques of artificial intelligence—including rule-based systems, Bayesian updating, certainty theory, fuzzy logic (types 1 and 2), frames, objects, agents, symbolic learning, case-based reasoning, genetic algorithms, optimization algorithms, neural networks, hybrids, and the Lisp and Prolog languages. The second part describes a wide range of practical applications in interpretation and diagnosis, design and selection, planning, and control. The author provides sufficient detail to help you develop your own intelligent systems for real applications. Whether you are building intelligent systems or you simply want to know more about them, this book provides you with detailed and up-to-date guidance. Check out the significantly expanded set of free web-based resources that support the book at: http://www.adrianhopgood.com/aitoolkit/
How to deal with uncertainty is a subject of much controversy in Artificial Intelligence. This volume brings together a wide range of perspectives on uncertainty, many of the contributors being the principal proponents in the controversy.Some of the notable issues which emerge from these papers revolve around an interval-based calculus of uncertainty, the Dempster-Shafer Theory, and probability as the best numeric model for uncertainty. There remain strong dissenting opinions not only about probability but even about the utility of any numeric method in this context.
Hardbound. How to deal with uncertainty is a subject of much controversy in Artificial Intelligence. This volume brings together a wide range of perspectives on uncertainty, many of the contributors being the principal proponents in the controversy.Some of the notable issues which emerge from these papers revolve around an interval-based calculus of uncertainty, the Dempster-Shafer Theory, and probability as the best numeric model for uncertainty. There remain strong dissenting opinions not only about probability but even about the utility of any numeric method in this context.
As its title suggests, "Uncertainty Management in Information Systems" is a book about how information systems can be made to manage information permeated with uncertainty. This subject is at the intersection of two areas of knowledge: information systems is an area that concentrates on the design of practical systems that can store and retrieve information; uncertainty modeling is an area in artificial intelligence concerned with accurate representation of uncertain information and with inference and decision-making under conditions infused with uncertainty. New applications of information systems require stronger capabilities in the area of uncertainty management. Our hope is that lasting interaction between these two areas would facilitate a new generation of information systems that will be capable of servicing these applications. Although there are researchers in information systems who have addressed themselves to issues of uncertainty, as well as researchers in uncertainty modeling who have considered the pragmatic demands and constraints of information systems, to a large extent there has been only limited interaction between these two areas. As the subtitle, "From Needs to Solutions," indicates, this book presents view points of information systems experts on the needs that challenge the uncer tainty capabilities of present information systems, and it provides a forum to researchers in uncertainty modeling to describe models and systems that can address these needs.
Uncertainty in Artificial Intelligence contains the proceedings of the Ninth Conference on Uncertainty in Artificial Intelligence held at the Catholic University of America in Washington, DC, on July 9-11, 1993. The papers focus on methods of reasoning and decision making under uncertainty as applied to problems in artificial intelligence (AI) and cover topics ranging from knowledge acquisition and automated model construction to learning, planning, temporal reasoning, and machine vision. Comprised of 66 chapters, this book begins with a discussion on causality in Bayesian belief networks before turning to a decision theoretic account of conditional ought statements that rectifies glaring deficiencies in classical deontic logic and forms a sound basis for qualitative decision theory. Subsequent chapters explore trade-offs in constructing and evaluating temporal influence diagrams; normative engineering risk management systems; additive belief-network models; and sensitivity analysis for probability assessments in Bayesian networks. Automated model construction and learning as well as algorithms for inference and decision making are also considered. This monograph will be of interest to both students and practitioners in the fields of AI and computer science.