Download Free Uncertain Models And Robust Control Book in PDF and EPUB Free Download. You can read online Uncertain Models And Robust Control and write the review.

This coherent introduction to the theory and methods of robust control system design clarifies and unifies the presentation of significant derivations and proofs. The book contains a thorough treatment of important material of uncertainties and robust control otherwise scattered throughout the literature.
This textbook aims to provide a clear understanding of the various tools of analysis and design for robust stability and performance of uncertain dynamic systems. In model-based control design and analysis, mathematical models can never completely represent the “real world” system that is being modeled, and thus it is imperative to incorporate and accommodate a level of uncertainty into the models. This book directly addresses these issues from a deterministic uncertainty viewpoint and focuses on the interval parameter characterization of uncertain systems. Various tools of analysis and design are presented in a consolidated manner. This volume fills a current gap in published works by explicitly addressing the subject of control of dynamic systems from linear state space framework, namely using a time-domain, matrix-theory based approach. This book also: Presents and formulates the robustness problem in a linear state space model framework. Illustrates various systems level methodologies with examples and applications drawn from aerospace, electrical and mechanical engineering. Provides connections between lyapunov-based matrix approach and the transfer function based polynomial approaches. Robust Control of Uncertain Dynamic Systems: A Linear State Space Approach is an ideal book for first year graduate students taking a course in robust control in aerospace, mechanical, or electrical engineering.
The standard theory of decision making under uncertainty advises the decision maker to form a statistical model linking outcomes to decisions and then to choose the optimal distribution of outcomes. This assumes that the decision maker trusts the model completely. But what should a decision maker do if the model cannot be trusted? Lars Hansen and Thomas Sargent, two leading macroeconomists, push the field forward as they set about answering this question. They adapt robust control techniques and apply them to economics. By using this theory to let decision makers acknowledge misspecification in economic modeling, the authors develop applications to a variety of problems in dynamic macroeconomics. Technical, rigorous, and self-contained, this book will be useful for macroeconomists who seek to improve the robustness of decision-making processes.
This book provides a unified collection of important, recent results for the design of robust controllers for uncertain systems. Most of the results presented are based on H? control theory, or its stochastic counterpart, risk sensitive control theory.Central to the philosophy of the book is the notion of an uncertain system. Uncertain systems are considered using several different uncertainty modeling schemes. These include norm bounded uncertainty, integral quadratic constraint (IQC) uncertainty and a number of stochastic uncertainty descriptions. In particular, the authors examine stochastic uncertain systems in which the uncertainty is outlined by a stochastic version of the IQC uncertainty description.For each class of uncertain systems covered in the book, corresponding robust control problems are defined and solutions discussed.
While there are many books on advanced control for specialists, there are few that present these topics for nonspecialists. Assuming only a basic knowledge of automatic control and signals and systems, Optimal and Robust Control: Advanced Topics with MATLAB® offers a straightforward, self-contained handbook of advanced topics and tools in automatic control. Techniques for Controlling System Performance in the Presence of Uncertainty The book deals with advanced automatic control techniques, paying particular attention to robustness—the ability to guarantee stability in the presence of uncertainty. It explains advanced techniques for handling uncertainty and optimizing the control loop. It also details analytical strategies for obtaining reduced order models. The authors then propose using the Linear Matrix Inequalities (LMI) technique as a unifying tool to solve many types of advanced control problems. Topics covered include: LQR and H-infinity approaches Kalman and singular value decomposition Open-loop balancing and reduced order models Closed-loop balancing Passive systems and bounded-real systems Criteria for stability control This easy-to-read text presents the essential theoretical background and provides numerous examples and MATLAB exercises to help the reader efficiently acquire new skills. Written for electrical, electronic, computer science, space, and automation engineers interested in automatic control, this book can also be used for self-study or for a one-semester course in robust control.
Shows readers how to exploit the capabilities of the MATLAB® Robust Control and Control Systems Toolboxes to the fullest using practical robust control examples.
Discontinuous Systems develops nonsmooth stability analysis and discontinuous control synthesis based on novel modeling of discontinuous dynamic systems, operating under uncertain conditions. While being primarily a research monograph devoted to the theory of discontinuous dynamic systems, no background in discontinuous systems is required; such systems are introduced in the book at the appropriate conceptual level. Being developed for discontinuous systems, the theory is successfully applied to their subclasses – variable-structure and impulsive systems – as well as to finite- and infinite-dimensional systems such as distributed-parameter and time-delay systems. The presentation concentrates on algorithms rather than on technical implementation although theoretical results are illustrated by electromechanical applications. These specific applications complete the book and, together with the introductory theoretical constituents bring some elements of the tutorial to the text.
Presented in a tutorial style, this comprehensive treatment unifies, simplifies, and explains most of the techniques for designing and analyzing adaptive control systems. Numerous examples clarify procedures and methods. 1995 edition.
This book covers a new paradigm of system modeling – the robust control-oriented linear fractional transformation (LFT) modeling. A dynamic system expressed in LFT modeling framework paves the way for the application of modern robust controller design technique like μ-synthesis method for controller design. This book covers the generalized robust control-oriented LFT modeling representation of the MIMO system depending upon the uncertainty structure, system dynamics, and the dimensions of the input–output. The modeling framework results into a compact and manageable representation of uncertainty modeling in the form of feedback-like structure that is suitable for design and implementation of the robust control technique like μ-synthesis-based H∞ control theory. This book also describes the application of the proposed methodology in a variety of advanced mechatronic systems like the Twin Rotor MIMO system, wheeled mobile robot, and an industrial robot arm.
For the first time, a textbook that brings together classical predictive control with treatment of up-to-date robust and stochastic techniques. Model Predictive Control describes the development of tractable algorithms for uncertain, stochastic, constrained systems. The starting point is classical predictive control and the appropriate formulation of performance objectives and constraints to provide guarantees of closed-loop stability and performance. Moving on to robust predictive control, the text explains how similar guarantees may be obtained for cases in which the model describing the system dynamics is subject to additive disturbances and parametric uncertainties. Open- and closed-loop optimization are considered and the state of the art in computationally tractable methods based on uncertainty tubes presented for systems with additive model uncertainty. Finally, the tube framework is also applied to model predictive control problems involving hard or probabilistic constraints for the cases of multiplicative and stochastic model uncertainty. The book provides: extensive use of illustrative examples; sample problems; and discussion of novel control applications such as resource allocation for sustainable development and turbine-blade control for maximized power capture with simultaneously reduced risk of turbulence-induced damage. Graduate students pursuing courses in model predictive control or more generally in advanced or process control and senior undergraduates in need of a specialized treatment will find Model Predictive Control an invaluable guide to the state of the art in this important subject. For the instructor it provides an authoritative resource for the construction of courses.