Download Free Ultrawideband Phased Array Antenna Technology For Sensing And Communications Systems Book in PDF and EPUB Free Download. You can read online Ultrawideband Phased Array Antenna Technology For Sensing And Communications Systems and write the review.

Practical ultrawideband phased array technology used in airborne and ground-based systems applications.
Practical ultrawideband phased array technology used in airborne and ground-based systems applications. Ultrawideband phased array antennas are an enabling technology for many ground-based and airborne communications and radar systems. This book surveys electromagnetic theory and phased array antenna theory and provides examples of ultrawideband phased array antenna technology. It describes some of the research on ultrawideband phased arrays undertaken by the authors and their colleagues at MIT Lincoln Laboratory over the last ten years. The book focuses on experimental prototype ultrawideband phased array technology developed at Lincoln Laboratory for applications in the VHF and UHF bands from approximately 100 MHz to 1 GHz, and addresses dipole, monopole, loop, and other antenna array elements. It offers examples of antennas for both airborne and ground vehicle applications. Most of the examples are developed in the context of rapid prototyping for quick assessment of communications and radar systems feasibility, with measurements and numerical electromagnetic simulation results provided for many prototype examples. The book is intended primarily for practicing antenna engineers, radar engineers, and communications engineers, and for graduate students and researchers in electrical engineering. Readers need no prior knowledge of ultrawideband antennas, although some background in electromagnetic theory, antennas, radar, and communications would be helpful.
Providing up-to-date material for UWB antennas and propagation as used in a wide variety of applications, "Ultra-wideband Antennas and Propagation for Communications, Radar and Imaging" includes fundamental theory, practical design information and extensive discussion of UWB applications from biomedical imaging, through to radar and wireless communications. An in-depth treatment of ultra-wideband signals in practical environments is given, including interference, coexistence and diversity considerations. The text includes antennas and propagation in biological media in addition to more conventional environments. The topics covered are approached with the aim of helping practising engineers to view the subject from a different angle, and to consider items as variables that were treated as constants in narrowband and wideband systems. Features tables of propagation data, photographs of antenna systems and graphs of results (e.g. radiation patterns, propagation characteristics) Covers the fundamentals of antennas and propagation, as well as offering an in-depth treatment of antenna elements and arrays for UWB systems, and UWB propagation models Provides a description of the underlying concepts for the design of antennas and arrays for conventional as well as ultra-wideband systems Draws together UWB theory by using case-studies to show applications of antennas and propagation in communication, radar and imaging systems The book highlights the unique design issues of using ultra-wideband and will serve both as an introductory text and a reference guide for designers and students alike.
This completely revised third edition of an Artech House classic, Phased Array Antenna Handbook, Second Edition, offers an up-to-date and comprehensive treatment of array antennas and systems. This edition provides a wealth of new material, including expanded coverage of phased array and multiple beam antennas. New modern machine learning techniques used for analysis are included. Additional material on wideband antennas and wideband coverage in array antennas are incorporated in this book, including new methods, devices, and technologies that have developed since the second edition. A detailed treatment of antenna system noise, sections on antenna pattern synthesis, developments in subarray technology, and in-depth coverage of array architecture and components are additional new features of this book. The book explores design elements that demonstrate how to size an array system with speed and confidence. Moreover, this resource provides expanded coverage of systems aspects of arrays for radar and communications. Supported with numerous equations and illustrations, this practical book helps evaluate basic antenna parameters such as gain, sidelobe levels, and noise. Readers learn how to compute antenna system noise, design subarray geometries for given bandwidth, scan and sidelobe constraints, and choose array illumination tapers for given sidelobe levels.
Written by a leading expert in the field, this practical new resource presents the fundamentals of electromagnetics and antenna technology. This book covers the design, electromagnetic simulation, fabrication, and measurements for various types of antennas, including impedance matching techniques and beamforming for ultrawideband dipoles, monopoles, loops, vector sensors for direction finding, HF curtain arrays, 3D printed nonplanar patch antenna arrays, waveguides for portable radar, reflector antennas, and other antennas. It explores the essentials of phased array antennas and includes detailed derivations of important field equations, and a detailed formulation of the method of moments. This resource exhibits essential derivations of equations, providing readers with a strong foundation of the underpinnings of electromagnetics and antennas. It includes a complete chapter on the details of antenna and electromagnetic test and measurement. This book explores details on 3D printed non-planar circular patch array antenna technology and the design and analysis of a planar array-fed axisymmetric gregorian reflector. The lumped-element impedance matched antennas are examined and include a look at an analytic impedance matching solution with a parallel LC network. This book provides key insight into many aspects of antenna technology that have broad applications in radar and communications.
ANTENNA AND ARRAY TECHNOLOGIES FOR FUTURE WIRELESS ECOSYSTEMS Discover a timely and accessible resource on the latest antenna research driving new developments in the field In Antenna and Array Technologies for Future Wireless Ecosystems, distinguished academics and authors Drs. Y. Jay Guo and Richard W. Ziolkowski deliver a cutting-edge resource for researchers, academics, students, and engineers who need the latest research findings on the newest challenges facing antenna designers who will be creating the technology that drives future 6G and beyond wireless systems and networks. This timely and impactful book offers the fundamental knowledge that will facilitate new research activities in the antennas and applied electromagnetics communities, and conveys innovative and practical solutions to many wireless industry problems. Its international cohort of leading authors delivers their findings on a variety of advanced topics in antenna and array research, including metasurface antennas; electrically small directive antennas; RF, millimeter-wave and THz antennas and arrays; atom-based sensors, and arrays of quantum emitters. The book also includes resources that cover the important topics: A thorough introduction to various intelligent and low-cost beam scanning, beamforming and beam-reconfigurable array technologies to support dynamic networking of future systems An exploration of advanced techniques for analyzing large arrays, as well as an examination of advanced antenna-in-package technologies for future mm-wave systems Discussions of the latest research on electrically small and extremely large hybrid antenna arrays, and photonic beamforming networks to address spectrum scarcity in future systems Low form-factor, low energy-consumption, and wireless power transfer antennas for the Internet of Things (IoT) This book is the companion of the Wiley book by the same authors, Advanced Antenna Array Engineering for 6G and Beyond Wireless Communications. Perfect for antenna engineers in academia and industry, Antenna and Array Technologies for Future Wireless Ecosystems will also be an essential resource in the libraries of senior undergraduate and graduate students studying antenna engineering applied electromagnetics and seeking a one-stop reference for state-of-the-art global antenna and antenna array research activities.
Ultrawideband (UWB) phased antenna arrays are critical to the success of future multi-functional communication, sensing, and countermeasure systems, which will utilize a few UWB phased arrays in place of multiple antennas on a platform. The success of this new systems approach relies in part on the ability to manufacture and assemble low-cost UWB phased arrays with excellent radiation characteristics. This dissertation presents the theory and design of a new class of UWB arrays that is based on unbalanced fed tightly-coupled horizontal dipoles over a ground plane. Practical implementation of this concept leads to two inexpensive wideband array topologies, the Banyan Tree Antenna (BTA) Array, and the Planar Ultrawideband Modular Antenna (PUMA) Array. The key challenge in designing unbalanced-fed tightly-coupled dipole arrays lies in the control of a common mode resonance that destroys UWB performance. This work introduces a novel feeding strategy that eliminates this resonance and results in wideband, wide-angle radiation. More importantly, the new feeding scheme is simple and intuitive, and can be implemented at low-cost in both vertically and planarly-integrated phased array architectures. Another desirable byproduct of this topology is the electrical and mechanical modularity of the aperture, which enables easy manufacturability and assembly. A theoretical framework is presented for the new phased array topologies, which is then applied to the design of innite BTA and PUMA arrays that achieve 4:1 and 5:1 bandwidths, respectively. A practical application of this technology is demonstrated through the full design, fabrication, and measurement of a 7.25-21GHz 16x16 dual-pol PUMA array prototype for SATCOM applications.
Modern society thrives on communication that is instant and available at all times, a constant exchange of information that encompasses everything from video streaming to GPS navigation. Experts even suggest that in the near future everything from our cars to our kitchen appliances will be connected to the internet, a feat that would not be possible without advanced wireless technology. Wideband, Multiband, and Smart Reconfigurable Antennas for Modern Wireless Communications showcases current trends and novel approaches in the design and analysis of the antennas that make wireless applications possible, while also identifying unique integration opportunities for antennas and wireless applications to work together. By featuring both theoretical and experimental approaches to integration, this book highlights specific design issues to assist a wide-range of readers including students, researchers, academics, and industry practitioners. This publication features chapters on a broad scope of topics including algorithms and antenna optimization, wireless infrastructure development, wireless applications of intelligent algorithms, antenna architecture, and antenna reconfiguration techniques.
This book constitutes the proceedings of the International Conference on Internet of Things, ICIOT 2019, held as part of SCF 2019, in San Diego, CA, USA, in June 2019. The 8 full and 3 short papers presented in this volume were carefully reviewed and selected from 16 submissions. With the rapid advancements of mobile Internet, cloud computing and big data, device-centric traditional Internet of Things (IoT) is now moving into a new era which is termed as Internet of Things Services (IOTS). In this era, sensors and other types of sensing devices, wired and wireless networks, platforms and tools, data processing/visualization/analysis and integration engines, and other components of traditional IoT are interconnected through innovative services to realize the value of connected things, people, and virtual Internet spaces.
This book provides an in-depth coverage of the most recent developments in the field of wireless underground communications, from both theoretical and practical perspectives. The authors identify technical challenges and discuss recent results related to improvements in wireless underground communications and soil sensing in Internet of Underground Things (IOUT). The book covers both existing network technologies and those currently in development in three major areas of SitS: wireless underground communications, subsurface sensing, and antennas in the soil medium. The authors explore novel applications of Internet of Underground Things in digital agriculture and autonomous irrigation management domains. The book is relevant to wireless researchers, academics, students, and decision agriculture professionals. The contents of the book are arranged in a comprehensive and easily accessible format. Focuses on fundamental issues of wireless underground communication and subsurface sensing; Includes advanced treatment of IOUT custom applications of variable-rate technologies in the field of decision agriculture, and covers protocol design and wireless underground channel modeling; Provides a detailed set of path loss, antenna, and wireless underground channel measurements in various novel Signals in the Soil (SitS) testbed settings.