Download Free Ultraviolet Radiation In Antarctica Book in PDF and EPUB Free Download. You can read online Ultraviolet Radiation In Antarctica and write the review.

Antarctic Ecosystems comprises 55 papers presented at the Fifth Symposium on Antarctic Biology held under the auspices of the Scientific Committee on Antarctic Research (SCAR) in Hobart, Australia, 29 August - 3 September, 1988. Both short- and long-term changes in ecosystems and community structures caused by natural and human factors were discussed to help understand the ecological processes taking place in a changing environment. The variability of ecological factors must be known for the development of realistic monitoring strategies and sound conservation practices.
This volume consolidates the wide range of research conducted in Antarctica since the late 1980s in the fields of ultraviolet radiation climatology and biological effects and provides an overview of research efforts by scientists from a number of research programs, since the discovery of the Antarctic ozone hole.
Although there are some biological processes that are supported by UV radiation, most organisms are stressed by it in various ways, e.g. through DNA damage. Top international experts present an integrated overview of UV radiation and its effects on terrestrial, freshwater and marine Arctic biota. Increased stratospheric ozone depletion and the corresponding increase in ground levels of UV radiation as well as ambient, "natural" UV radiation as a key ecological factor in the Arctic spring and summer are discussed in detail. Additionally, basic information on Arctic ecosystems is given. The volume provides not only an excellent account of present-day knowledge of the subject, but also describes the state of the art on which future research can be built.
In response to the overwhelming concern for possible acute and long-term effects of ozone depletion on terrestrial and aquatic life, this volume presents a comprehensive collection of review articles from an internationally acknowledged group of experts.
Numerous studies report that ultraviolet (UV) radiation is harmful to living organisms and detrimental to human health. Growing concerns regarding the increased levels of UV-B radiation that reach the earth's surface have led to the development of ground- and space-based measurement programs. Further study is needed on the measurement, modeling, and effects of UV radiation. The chapters of this book describe the research conducted across the globe over the past three decades in the areas of: (1) current and predicted levels of UV radiation and its associated impact on ecosystems and human health, as well as economic and social implications; (2) new developments in UV instrumentation, advances in calibration (ground- and satellite-based), measurement methods, modeling efforts, and their applications; and (3) the effects of global climate change on UV radiation. Dr. Wei Gao is a Senior Research Scientist and the Director of the USDA UV-B Monitoring and Research Program, Natural Resource Ecology Laboratory, Colorado State University. Dr. Gao is a SPIE fellow and serves as the Editor-in-Chief for the Journal of Applied Remote Sensing. Dr. Daniel L. Schmoldt is the National Program Leader for instrumentation and sensors at the National Institute of Food and Agriculture (NIFA) of the U.S. Department of Agriculture. Dr. Schmoldt served as joint Editor-in-Chief of the journal, Computers & Electronics in Agriculture, from 1997 to 2004. Dr. James R. Slusser retired in 2007 from the USDA UV-B Monitoring and Research Program at Colorado State University. He was active in the Society of Photo-Optical Instrumentation Engineers, the American Geophysical Union, and the American Meteorological Society. Dr. Slusser is currently pursuing his interests in solar energy and atmospheric transmission.
Following the rapid developments in the UV-B measurement techniques and the rapidly growing research in the field in the late 80's and early 90's, we organized a large gathering of distinguished experts in a NATO Advanced Study Institute, held in Halkidiki, Greece on October, 2-11. 1995. The Institute was organized so as to include state of the art lectures on most aspects of solar ultraviolet radiation and its effects. This was achieved by extended lectures and discussions given in five sessions by 27 lecturers and a demonstration of filed measurements and calibration techniques at the end of the Institute. The ASI began with the sun and fundamentals on solar radiative emissions and their variability in time and continued with the interaction of solar Ultraviolet with the atmosphere through the complex scattering processes and photochemical reactions involved. Particular emphasis was given to changes in atmospheric composition imposed by different manifestations of the solar activity cycle. as well as on the modelling of radiative transfer through the atmosphere and the ocean under variable environmental conditions. Overviews on the ozone issue. its monitoring and variability were extensively discussed with emphasis on the observed acceleration of ozone decline in the early 90's. This acceleration had as a consequence, significant increases in UV-B radiation observed at a few world-wide distributed stations.
On cover: Environment. UV B = ultra violet radiation (280-315 nm).
The study of Antarctic communities can provide a valuable step forward in investigating the control of community development, the utilization of habitats and the interaction among species in both species rich and species poor communities. This book contains chapters characterizing the present approaches to both aquatic and terrestrial communities in the Antarctic. From biodiversity to trophic flows, from ecophysiological strategies to the impacts of environmental change and the effects of human disturbance, this volume provides an up to the minute overview of community studies in an area covering ten percent of the Earth's surface.
From microbial to plant ecosystems, this book examines how changes in UV radiation, caused by anthropogenic ozone depletion, as well as changes in radiation levels throughout the evolution of life on Earth, can alter species composition and interspecies competitiveness. It focuses on the evolutionary aspects of the effects of UV as well as the various synergistic interactions of UV radiation with other environmental factors. Because our knowledge of UV effects on whole ecosystems is still at a relatively early stage, an important part of each chapter is an overview of future research directions and indications of where new date and knowledge is needed.