Download Free Ultrathin Oxide Layers For Solar And Electrocatalytic Systems Book in PDF and EPUB Free Download. You can read online Ultrathin Oxide Layers For Solar And Electrocatalytic Systems and write the review.

This book brings together the fundamentals and applications of ultrathin oxide layers while highlighting connections and future opportunities.
Ultrathin metal oxide layers have emerged in recent years as a powerful approach for substantially enhancing the performance of photo, electro, or thermal catalytic systems for energy, in some cases even enabling the use of highly attractive materials previously found unsuitable. This development is due to the confluence of new synthetic preparation methods for ultrathin oxide layers and a more advanced understanding of interfacial phenomena on the nano and atomic scale. This book brings together the fundamentals and applications of ultrathin oxide layers while highlighting connections and future opportunities with the intent of accelerating the use of these materials and techniques for new and emerging applications of catalysis for energy. It comprehensively covers the state-of-the-art synthetic methods of ultrathin oxide layers, their structural and functional characterization, and the broad range of applications in the field of catalysis for energy. Edited by leaders in the field, and with contributions from global experts, this title will be of interest to graduate students and researchers across materials science and chemistry who are interested in ultrathin oxide layers and their applications in solar energy conversion, renewable energy, photocatalysis, electrocatalysis and protective coatings.
Greenhouse gas removal (GGR) technologies can remove greenhouse gases such as carbon dioxide from the atmosphere. Most of the current GGR technologies focus on carbon dioxide removal, these include afforestation and reforestation, bioenergy with carbon capture and storage, direct air capture, enhanced weathering, soil carbon sequestration and biochar, ocean fertilisation and coastal blue carbon. GGR technologies will be essential in limiting global warning to temperatures below 1.5°C (targets by the IPCC and COP21) and will be required to achieve deep reductions in atmospheric CO2 concentration. In the context of recent legally binding legislation requiring the transition to a net zero emissions economy by 2050, GGR technologies are broadly recognised as being indispensable. This book provides the most up-to-date information on GGR technologies that provide removal of atmosphere CO2, giving insight into their role and value in achieving climate change mitigation targets. Chapters discuss the issues associated with commercial development and deployment of GGRs, providing potential approaches to overcome these hurdles through a combination of political, economic and R&D strategies. With contributions from leaders in the field, this title is an indispensable resource for graduate students and researchers in academia and industry, working in chemical engineering, mechanical engineering and energy policy.
The ongoing energy transition will require a number of emerging technological concepts (e.g. Power-to-X and Hydrogen Economy, etc.) which will ultimately combine renewable energy, novel chemical production/conversion processes and innovative, integrated devices/systems to produce sustainable platform molecules, fuels and materials. In this book, readers are introduced to selected concepts, challenges, steps forward and necessities relating to the technologies required to deepen the integration between the energy and chemical sectors. Selected key technologies to support this integration will be discussed, with particular emphasis on the catalytic systems and devices required to enable the transition including electrochemical cells, CO2 hydrogenation and plasma-assisted processes. Several chapters will discuss evolving and emerging technologies and tools (e.g. LCA) that will be required to enable a green and successful energy transition. The book will be of interest to graduate students and researchers in renewable energy, catalysis, chemical engineering and chemistry, wishing to have an introduction to the topic and associated technologies.
The exploration of new-family desalination techniques has become increasingly important in recent decades. Capacitive deionization (CDI) has attracted multidisciplinary interest as a promising alternative to the conventional desalination techniques of reverse osmosis and electro-osmosis, due to several attractive features such as low energy consumption, environmental friendliness, and high water utilization efficiency. CDI desalts saline water through storing ions in electrical double layers of porous carbons or by redox reactions with faradic materials. This is the first book to specialise in CDI and aims to showcase the fundamentals and progressive achievements of the research. Chapters cover the timeline of CDI technologies, the expansion of new-family electrode materials, exploitation of new-concept CDI devices, and applications of CDI in other new areas. In addition, the book provides new insights into future directions for the development of CDI and other emerging nanotechnologies for addressing the energy-water nexus. Edited by a founder of the field, the book will be of interest to those researching water desalination and purification across chemistry, materials science and environmental science.
Coatings are used for a wide range of applications, from anti-fogging coatings for glass through to corrosion control in the aerospace and automotive industries. Nanocoatings and ultra-thin films provides an up-to-date review of the fundamentals, processes of deposition, characterisation and applications of nanocoatings.Part one covers technologies used in the creation and analysis of thin films, including chapters on current and advanced coating technologies in industry, nanostructured thin films from amphiphilic molecules, chemical and physical vapour deposition methods and methods for analysing nanocoatings and ultra-thin films. Part two focuses on the applications of nanocoatings and ultra-thin films, with chapters covering topics such as nanocoatings for architectural glass, packaging applications, conventional and smart nanocoatings for corrosion protection in aerospace engineering and ultra-thin membranes for sensor applications.With its distinguished editors and international team of contributors, Nanocoatings and ultra-thin films is an essential reference for professional engineers in the glazing, consctruction, electronics and transport industries, as well as all those with an academic research interest in the field. - Provides an up-to-date review of the fundamentals, processes of deposition, characterisation and applications of nanocoatings - Focuses on the applications of nanocoatings and ultra-thin films, covering topics such as nanocoatings for architectural glass, packaging applications and ultra-thin membranes for sensor applications - Includes chapters on current and advanced coating technologies in industry, nanostructured thin films from amphiphilic molecules, chemical and physical vapour deposition methods and methods for analysing nanocoatings and ultra-thin films
Discover the latest research in photocatalysis combined with foundational topics in basic physical and chemical photocatalytic processes In Heterogeneous Photocatalysis: From Fundamentals to Applications in Energy Conversion and Depollution, distinguished researcher and editor Jennifer Strunk delivers a rigorous discussion of the two main topics in her field—energy conversion and depollution reactions. The book covers topics like water splitting, CO2 reduction, NOx abatement and harmful organics degradation. In addition to the latest research on these topics, the reference provides readers with fundamental information about elementary physical and chemical processes in photocatalysis that are extremely practical in this interdisciplinary field. It offers an excellent overview of modern heterogeneous photocatalysis and combines concepts from different viewpoints to allow researchers with backgrounds as varied as electrochemistry, material science, and semiconductor physics to begin developing solutions with photocatalysis. In addition to subjects like metal-free photocatalysts and photocarrier loss pathways in metal oxide absorber materials for photocatalysis explored with time-resolved spectroscopy, readers will also benefit from the inclusion of: Thorough introductions to kinetic and thermodynamic considerations for photocatalyst design and the logic, concepts, and methods of the design of reliable studies on photocatalysis Detailed explorations of in-situ spectroscopy for mechanistic studies in semiconductor photocatalysis and the principles and limitations of photoelectrochemical fuel generation Discussions of photocatalysis, including the heterogeneous catalysis perspective and insights into photocatalysis from computational chemistry Treatments of selected aspects of photoreactor engineering and defects in photocatalysis Perfect for photochemists, physical and catalytic chemists, electrochemists, and materials scientists, Heterogeneous Photocatalysis will also earn a place in the libraries of surface physicists and environmental chemists seeking up-to-date information about energy conversion and depollution reactions.
Photoelectrocatalysis: Fundamentals and Applications presents an in-depth review of the topic for students and researchersworking on photoelectrocatalysis-related subjects from pure chemistry to materials and environmental chemistry inorder to propose applications and new perspectives. The main advantage of a photoelectrocatalytic process is the mildexperimental conditions under which the reactions are carried out, which are often possible at atmospheric pressure androom temperature using cheap and nontoxic solvents (e.g., water), oxidants (e.g., O2 from the air), catalytic materials (e.g.,TiO2 on Ti layer), and the potential exploitation of solar light. This book presents the fundamentals and the applications of photoelectrocatalysis, such as hydrogen production fromwater splitting, the remediation of harmful compounds, and CO2 reduction. Photoelectrocatalytic reactors and lightsources, in addition to kinetic aspects, are presented along with an exploration of the relationship between photocatalysisand electrocatalysis. In addition, photocorrosion issues and the application of selective photoelectrocatalytic organictransformations, which is now a growing field of research, are also reported. Finally, the advantages/disadvantages andfuture perspectives of photoelectrocatalysis are highlighted through the possibility of working at a pilot/industrial scale inenvironmentally friendly conditions. - Presents the fundamentals of photoelectrocatalysis - Outlines photoelectrocatalytic green chemistry - Reviews photoelectrocatalytic remediation of harmful compounds, hydrogen production, and CO2 reduction - Includes photocorrosion, photoelectrocatalytic reactors, and modeling along with kinetic aspects
Explore green catalytic reactions with this reference from a renowned leader in the field Green reactions—like photo-, photoelectro-, and electro-catalytic reactions—offer viable technologies to solve difficult problems without significant damage to the environment. In particular, some gas-involved reactions are especially useful in the creation of liquid fuels and cost-effective products. In Photo- and Electro-Catalytic Processes: Water Splitting, N2 Fixing, CO2 Reduction, award-winning researcher Jianmin Ma delivers a comprehensive overview of photo-, electro-, and photoelectron-catalysts in a variety of processes, including O2 reduction, CO2 reduction, N2 reduction, H2 production, water oxidation, oxygen evolution, and hydrogen evolution. The book offers detailed information on the underlying mechanisms, costs, and synthetic methods of catalysts. Filled with authoritative and critical information on green catalytic processes that promise to answer many of our most pressing energy and environmental questions, this book also includes: Thorough introductions to electrocatalytic oxygen reduction and evolution reactions, as well as electrocatalytic hydrogen evolution reactions Comprehensive explorations of electrocatalytic water splitting, CO2 reduction, and N2 reduction Practical discussions of photoelectrocatalytic H2 production, water splitting, and CO2 reduction In-depth examinations of photoelectrochemical oxygen evolution and nitrogen reduction Perfect for catalytic chemists and photochemists, Photo- and Electro-Catalytic Processes: Water Splitting, N2 Fixing, CO2 Reduction also belongs in the libraries of materials scientists and inorganic chemists seeking a one-stop resource on the novel aspects of photo-, electro-, and photoelectro-catalytic reactions.