Download Free Ultrastructure Of The Connective Tissue Matrix Book in PDF and EPUB Free Download. You can read online Ultrastructure Of The Connective Tissue Matrix and write the review.

In recent years, the techniques of electron microscopy have developed so widely and rapidly that they now cover the fields of research once the unique ll:panage of sister research techniques such as biochemistry, physiology, immunology, X-ray diffraction, etc. It is now possible to reach molecular and submolecular levels, making this technique indispensable in every type of research. Electron microscopy alone often provides enough information to solve given problems. In the field of the connective tissue matrix, knowledge of the molecular structure of collagen, pro teoglycans and elastin and their interaction has been to a large extent elucidated by electron microscopy. The field over which electron microscopy ranges in the investigation of the connective tissue matrix is so wide that the aim of this volume is to collect the main ultrastructural acquisitions disseminated in various journals and monographs in one book. The intent ofthis volume is to: (a) integrate different and new microscopic methods and review the results of such an integrative approach; (b) present a comprehensive ultrastructural account of selected aspects of the field; (c) point out gaps or controversial topics in our knowledge; (d) outline pertinent future research and expansion of the subject.
The must-have book for candidates preparing for the oral component of the FRCS (Tr and Orth).
In the ten-year interval since the first edition of this volume went to press, our knowledge of extracellular matrix (ECM) function and structure has enor mously increased. Extracellular matrix and cell-matrix interaction are now routine topics in the meetings and annual reviews sponsored by cell biology societies. Research in molecular biology has so advanced the number of known matrix molecules and the topic of gene structure and regulation that we won dered how best to incorporate the new material. For example, we deliberated over the inclusion of chapters on molecular genetics. We decided that with judicious editing we could present the recent findings in molecular biology within the same cell biology framework that was used for the first edition, using three broad headings: what is extracellular matrix, how is it made, and what does it do for cells? Maintaining control over the review of literature on the subject of ECM was not always an easy task, but we felt it was essential to production of a highly readable volume, one compact enough to serve the the student as an introduction and the investigator as a quick update on graduate the important recent discoveries. The first edition of this volume enjoyed con hope the reader finds this edition equally useful. siderable success; we D. Hay Elizabeth vii Contents Introductory Remarks 1 Elizabeth D. Hay PART I. WHAT IS EXTRACELLULAR MATRIX? Chapter 1 Collagen T. F. Linsenmayer 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2. The Collagen Molecule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2. 1. Triple-Helical Domain(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
This book describes analysis techniques and results of topics such as physical backgrounds, chemical backgrounds, and principal methods of topo-optical reactions used in ultrastructure research of the ECM; orientation patterns of GAGs and collagen in different tissues/cartilage, cornea, kidney basement membranes, and skin; factors involved in the formation of submicroscopically ordered matrix structure; and cell-matrix interactions, including cytoskeleton-cell-membrane-matrix relationships. A summarization of the advantages and limitations of polarization microscopy compared to electron microscopy in ultracellular research is also included. Cell biologists, histologists, pathologists, and biochemists in connective tissue research will find this book to be an invaluable reference tool.
Knowledge of the extracellular matrix (ECM) is essential to understand cellular differentiation, tissue development, and tissue remodeling. This volume of the series “Biology of Extracellular Matrix” provides a timely overview of the structure, regulation, and function of the major macromolecules that make up the extracellular matrix. It covers topics such as collagen types and assembly of collagen-containing suprastructures, basement membrane, fibronectin and other cell-adhesive glycoproteins, proteoglycans, microfibrils, elastin, fibulins and matricellular proteins, such as thrombospondin. It also explores the concept that ECM components together with their cell surface receptors can be viewed as intricate nano-devices that allow cells to physically organize their 3-D-environment. Further, the role of the ECM in human disease and pathogenesis is discussed as well as the use of model organisms in elucidating ECM function.
Knowledge in the field of the biology of the extracellular matrix, and in particular of collagen, has made considerable progress over the last ten years, especially in mammals, birds and ln man with respect to very important applied medical aspects. Basic knowledge in the animal kingdom overall has increased more slowly and haphazardly. We, therefore, considered it useful to organize a meeting specifically devoted to the study of the invertebrate and lower vertebrate collagens. The NATO Scientific Division financed an Advanced Research Workshop aimed at bringing together experts qualified in collagen biology (with morphological, biochemical and genetic specialization) with researchers who are currently studying collagenous tissues of invertebrates and lower vertebrates. The Medical-Biology Committee of the CNR-Rome and the University of Milan also supplied interest and support for the organization of this Meeting. The format of the workshop consisted in: 1) main lectures on the most recent aspects of collagen biology; 2) minireviews on the current knowledge of collagenous tissues in the various invertebrate phyla and in fish; 3) contributed papers on particular aspects of research in specific fields; 4) workshops on the methodology of studying collagen. As we had intended, the Workshop gave a comprehensive overview of acquired knowledge and of the present state of research actlvlty. It permitted wide interdisciplinary discussion, enabling collabora tions to be established and new research themes to be chosen. This volume contains the text of all the contributions presented at the Meeting, including posters.
The Second Edition of Connective Tissue and Its Heritable Disorders: Molecular, Genetic, and Medical Aspects is the definitive reference text in its field, with over 40% more pages on the nature, diagnosis, and treatment of disease than its predecessor. Collecting new research on disorders detailed in the first edition as well as on those previously excluded, editors Peter Royce and Beat Steinmann provide the most up-to-date clinical and scientific information for medical specialists treating affected individuals. Features of this revised and updated volume include detailed reviews of the clinical diagnosis, mode of inheritance, risk of recurrence, and prenatal diagnosis of each inherited connective tissue disorder; a thorough description of the morphology of connective tissues; a completely updated and revised section on the biology of the extracellular matrix; and the addition of syndromes such as craniosyntosis, and disorders of sulfate metabolism.
This volume is a reference handbook focusing on diseases like Marfan syndrome, Ehlers-Danlos syndrome, Loeys-Dietz syndrome and other heritable soft connective tissue diseases. The book presents detailed information for both basic scientists and for clinicians seeing patients. It is also a stepping stone for new investigations and studies that goes beyond the facts about the composition and biochemistry of the connective tissue and extracellular matrix, as the authors connect individual components to specific aspects of various soft tissue disorders and to the actual or potential treatment of them. Progress in Heritable Soft Connective Tissue Diseases features very prominent physicians and scientists as contributors who bring their most recent discoveries to the benefit of readers. Their expertise will help clinicians with proper diagnosis of sometimes elusive and uncommon heritable diseases of soft connective tissues. This book also offers an update on the pathophysiology of these diseases, including an emphasis on unifying aspects such as connections between embryonic development of the different types of connective tissues and systems, and the role of TGF-beta in development and physiology of soft tissues. This new set of data explains, at least in part, why many of these disorders are interconnected, though the primary pathophysiological events, such as gene mutations, may be different for each disorder.
This volume demonstrates how cellular and associated electron microscopy contributes to knowledge about biological structural information, primarily at the nanometer level. It presents how EM approaches complement both conventional structural biology (at the high end, angstrom level of resolution) and digital light microscopy (at the low end, 100-200 nanometers). Basic techniques in transmission and scanning electron microscopy Detailed chapters on how to use electron microscopy when dealing with specific cellular structures, such as the nucleus, cell membrane, and cytoskeleton Discussion on electron microscopy of viruses and virus-cell interactions