Download Free Ultrafast Mid Infrared Pulse Generation In Chalcogenide Glass Book in PDF and EPUB Free Download. You can read online Ultrafast Mid Infrared Pulse Generation In Chalcogenide Glass and write the review.

"The presence of vibrational and rotational transition lines in the mid-infrared (MIR) (2-10 æm) spectral range has stimulated numerous applications in the fields of spectroscopy, sensing and medicine. These emerging applications have intensified the research effort for the growth and development of novel optical light sources. Nonlinear effects in glass fibers are being extensively studied to generate ultrafast pulses at this wavelength range. Highly nonlinear silica fiber has shown record performance in the telecommunication wavelength band, however the strong material absorption of silica glass at wavelengths>2 æm limits its applicability in MIR. Recently, due to the extended MIR transmission (>12 æm wavelength) and ultra-high nonlinear gain, chalcogenide (ChG) fibers have attracted a great deal of attention and being widely investigated as an efficient solution towards this end. ChG microwires, in addition, enable engineerable chromatic dispersion, thereby allowing easy access to different nonlinear processes for pulse generation. This dissertation explores the potential of ChG microwires for generation of ultrafast pulses at MIR wavelengths. Several different all-fiber optical sources are developed as a result of the nonlinear processes implemented to reach these wavelengths. This includes the design and development of parametric oscillators and mode-locked lasers, four-wave mixing wavelength converters, Raman soliton generation systems and supercontinuum lasers. The demonstrated sources generate pulses of wide range of temporal duration and power level, while covering a wavelength range of 1.9 æm to 3.0 æm with broadband and/or selective wavelength tunability. The numerical investigation of the underlying nonlinear process are also performed to confirm and predict the experimental behavior. Owing to their compactness, hand-portability, low power consumption and broad operation window, these novel optical sources are expected find wide range of applications in MIR spectroscopy and sensing"--
This book gives an overview on mid-infrared optical glass and fibers laser, it cover the underlying principle, historic background, as well as recent advances in materials processing and enhanced properties for rare earth doped luminescence, spectroscopy lasers, or optical nonlinearity applications. It describes in great detail, the preparation of high purity non-oxide IR glass and fibers to be used as mid-IR fiber laser and supercontinuum sources for optical fiber spectroscopy. It will be useful for academics, researchers and engineers in various disciplines who require a broad introduction to the subject and would like to learn more about the state-of-the-art and upcoming trends in mid-infrared fiber source development, particularly for industrial, medical and military applications.
Mid-Infrared Fibre Photonics: Glass Materials, Fibre Fabrication and Processing, Laser Sources and Devicess combines the latest glass chemistry, fibre fabrication and post processing techniques to provide a comprehensive reference on the fundamental science and latest research in fibre photonics for the mid-infrared range. The book systematically reviews the key glass materials systems including fluorides, chalcogenides, and oxides. Each materials chapter includes discussion of composition, structure, thermal, optical and mechanical properties, extrinsic and intrinsic loss mechanisms, materials preparation and purification techniques. Then Mid-Infrared Fibre Photonics: Glass Materials, Fibre Fabrication and Processing, Laser Sources and Devicess covers the most relevant fabrication, post-processing, and spectroscopy techniques. Fibre sources are also addressed including fibre sources for continuous wave emission, pulsed emission, and broadband emission. The book concludes with a brief overview of important medical, sensing and defence applications. Systematic coverage of the most relevant materials for mid-infrared fibre photonics including discussion of composition, structure, thermal, optical and mechanical properties, loss mechanisms, materials preparation and purification techniques Reviews the key fabrication and processing techniques of mid-infrared fibre technologies Addresses the important medical, sensing and defence applications
Hydrogen-bonded systems are ubiquitous in nature, where they provide structure and pathways for energy dissipation. Cyclic, hydrogen-bonded interfaces are capable of mediating proton transfer, but these structures have broad and complex vibrational spectra. To study these vibrational features, an ultrafast continuum midinfrared (CIR) laser pulse has been incorporated as the probe pulse in several vibrational spectroscopies used to study the vibrational dynamics and proton transfer of cyclic, hydrogen-bonded dimers. Unlike traditional ultrafast vibrational spectroscopy, which is limited to a few hundred cm-1 of bandwidth in a single experiment, ultrafast mid-infrared continuum spectroscopy allows vibrational dynamics and coupling to be observed across the full vibrational spectrum. The vibrational dynamics of the 7-azaindole- acetic acid heterodimer were studied with mid-infrared pump-CIR probe and two dimensional infrared (2D IR) spectroscopy, which revealed strong coupling across the spectrum and very fast energy transfer across the bridging hydrogen bonds. Additionally, photoinduced proton transfer was studied in the 7-azaindole homodimer with preliminary UV pump-CIR probe experiments, which showed the formation of the doubly proton-transferred tautomer and spectral signatures of proton transfer. Further development of ultrafast mid-IR spectroscopy was explored with the generation of high energy continuum mid-IR pulses in bulk chalcogenide glass.
This book, now in its fourth edition, is a well-known classic on the ultrafast nonlinear and linear processes responsible for supercontinuum generation. The book begins with chapters reviewing the experimental and theoretical understanding of the field along with key applications developed since the discovery of the supercontinuum effect. The chapters that follow cover recent research activity on supercontinuum phenomena, novel applications, and advances achieved since the publication of the previous edition. The new chapters focus on: filamentation in gases, air, and condensed media; conical emission by four-wave mixing and X-waves; electronic self-phase mechanism; higher harmonics generation; attosecond laser pulses; complex vector beam supercontinuum; higher order self-phase modulation and cross-phase modulation; nonlinear supercontinuum interference in uniaxial crystals; new nonlinear microscopes involving supercontinuum and ultrafast lasers with biomedical applications; and other current supercontinuum applications in communications. The Supercontinuum Laser Source is a definitive work by one of the discoverers of the white light effect. It is indispensable reading for any researcher or student working in the field of ultrafast laser physics. Chapter 6 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This book mainly introduces the basic theory and physical characteristics of photoelectric materials, the preparation technology of photoelectric components, the working principle, the latest application, the latest progress of photoelectric materials and devices technology and the correlation with other technologies. The content mainly involves the theoretical basis of photoelectric materials, micro-nano photoelectric materials and devices, semiconductor luminescent materials and devices, inorganic photoluminescence materials, LED packaging technology, transparent conductive materials, touch screen, display screen, solar cell materials and the basic principles and development trend of their applications. In particular, the book gives a systematic theoretical analysis of new photoelectric materials and devices, such as optoelectronic materials and devices, transparent conductive materials, and provides application examples.
An important guide to the major techniques for generating coherent light in the mid-infrared region of the spectrum Laser-based Mid-infrared Sources and Applications gives a comprehensive overview of the existing methods for generating coherent light in the important yet difficult-to-reach mid-infrared region of the spectrum (2–20 μm) and their applications. The book describes major approaches for mid-infrared light generation including ion-doped solid-state lasers, fiber lasers, semiconductor lasers, and laser sources based on nonlinear optical frequency conversion, and reviews a range of applications: spectral recognition of molecules and trace gas sensing, biomedical and military applications, high-field physics and attoscience, and others. Every chapter starts with the fundamentals for a given technique that enables self-directed study, while extensive references help conduct deeper research. Laser-based Mid-infrared Sources and Applications provides up-to-date information on the state-of the art mid-infrared sources, discusses in detail the advancements made over the last two decades such as microresonators and interband cascade lasers, and explores novel approaches that are currently subjects of intense research such as supercontinuum and frequency combs generation. This important book: • Explains the fundamental principles and major techniques for coherent mid-infrared light generation • Discusses recent advancements and current cutting-edge research in the field • Highlights important biomedical, environmental, and military applications Written for researchers, academics, students, and engineers from different disciplines, the book helps navigate the rapidly expanding field of mid-infrared laser-based technologies.
The field of ultrafast nonlinear optics is broad and multidisciplinary, and encompasses areas concerned with both the generation and measurement of ultrashort pulses of light, as well as those concerned with the applications of such pulses. Ultrashort pulses are extreme events – both in terms of their durations, and also the high peak powers which their short durations can facilitate. These extreme properties make them powerful experiment tools. On one hand, their ultrashort durations facilitate the probing and manipulation of matter on incredibly short timescales. On the other, their ultrashort durations can facilitate high peak powers which can drive highly nonlinear light-matter interaction processes. Ultrafast Nonlinear Optics covers a complete range of topics, both applied and fundamental in nature, within the area of ultrafast nonlinear optics. Chapters 1 to 4 are concerned with the generation and measurement of ultrashort pulses. Chapters 5 to 7 are concerned with fundamental applications of ultrashort pulses in metrology and quantum control. Chapters 8 and 9 are concerned with ultrafast nonlinear optics in optical fibres. Chapters 10 to 13 are concerned with the applications of ultrashort pulses in areas such as particle acceleration, microscopy, and micromachining. The chapters are aimed at graduate-student level and are intended to provide the student with an accessible, self-contained and comprehensive gateway into each subject.