Download Free Ultrafast Lasers And Optics For Experimentalists Book in PDF and EPUB Free Download. You can read online Ultrafast Lasers And Optics For Experimentalists and write the review.

The use of ultrafast lasers has expanded beyond use by specialist laser physicists and is increasingly commonplace in both physical and life sciences, where the high intensities, broad bandwidths, and short pulse durations make them ideal for investigating a wide range of chemical and physical phenomena. Working with these ultrashort femtosecond laser pulses requires some special care when compared to other laser systems, and this book provides an ideal starting point for the non-specialist to gain the necessary knowledge to start effectively working with ultrafast lasers and optics. The book walks the reader through the relevant parts of ultrashort pulse physics, pulse generation, and pulse characterisation, before discussing how to practically build an optical setup and manipulate these pulses. Many aspects of the practicalities of working with optics and lasers that are often considered assumed knowledge by experienced campaigners are discussed in detail. Aimed specifically at non-specialists, the emphasis is placed on intuitive, qualitative understanding of the concepts. The fundamental aim is that students starting a project or PhD in a laser group, can pick this book up and quickly get up to speed with the fundamentals of ultrafast laser physics that enable effective laboratory working.
Well-balanced and up-to-date introduction to the field of semiconductor optics, including transport phenomena in semiconductors. Starting with the theoretical fundamentals of this field the book develops, assuming a basic knowledge of solid-state physics. The application areas of the theory covered include semiconductor lasers, detectors, electro-optic modulators, single-electron transistors, microcavities and double-barrier resonant tunneling diodes. One hundred problems with hints for solution help the readers to deepen their knowledge.
The advent of laser-based sources of ultrafast infrared pulses has extended the study of very fast molecular dynamics to the observation of processes manifested through their effects on the vibrations of molecules. In addition, non-linear infrared spectroscopic techniques make it possible to examine intra- and intermolecular interactions and how such interactions evolve on very fast time scales, but also in some instances on very slow time scales. Ultrafast Infrared Vibrational Spectroscopy is an advanced overview of the field of ultrafast infrared vibrational spectroscopy based on the scientific research of the leading figures in the field. The book discusses experimental and theoretical topics reflecting the latest accomplishments and understanding of ultrafast infrared vibrational spectroscopy. Each chapter provides background, details of methods, and explication of a topic of current research interest. Experimental and theoretical studies cover topics as diverse as the dynamics of water and the dynamics and structure of biological molecules. Methods covered include vibrational echo chemical exchange spectroscopy, IR-Raman spectroscopy, time resolved sum frequency generation, and 2D IR spectroscopy. Edited by a recognized leader in the field and with contributions from top researchers, including experimentalists and theoreticians, this book presents the latest research methods and results. It will serve as an excellent resource for those new to the field, experts in the field, and individuals who want to gain an understanding of particular methods and research topics.
This book discusses quantum optics and investigates the quantum properties of interactions between atoms and laser fields. It is divided into three parts. Part I introduces the elementary theory of the interaction between atoms and light. Part II provides a concentrated discussion on the quantum properties of light fields. Part III deals with the quantum dynamic properties of the atoms interacting with laser fields. This book can be used as a text for both graduate and undergraduate students; it will also benefit scientists who are interested in quantum optics and theoretical physics.
This is a comprehensive book on the fundamental aspects of lasers and holography. It represents a self-contained treatment of the basic and state-of-the-art topics on the two subjects in a single volume. The book covers the latest technological and scientific developments and major advances that have taken place in the last decade and includes recent applications in medicine, information processing, interconnects and nondestructive testing.It is intended to fill the need of both researchers and graduate students for a single source book containing the necessary and relevant material in the areas of lasers and holography.
Published on the occasion of Theodor Hänsch's 60th Birthday emphasis is placed on precision related to results in a variety of fields, such as atomic clocks, frequency standards, and the measurement of physical constants in atomic physics. Furthermore, illustrations and engineering applications of the fundamentals of quantum mechanics are widely covered. It has contributions by Nobel prize winners Norman F. Ramsey, Steven Chu, and Carl E. Wieman.
Proceedings of SPIE present the original research papers presented at SPIE conferences and other high-quality conferences in the broad-ranging fields of optics and photonics. These books provide prompt access to the latest innovations in research and technology in their respective fields. Proceedings of SPIE are among the most cited references in patent literature.
Probing and controlling electrons and nuclei in matter at the attosecond timescale became possible with the generation of attosecond pulses by few-cycle intense lasers, and has revolutionized our understanding of atomic structure and molecular processes. This book provides an intuitive approach to this emerging field, utilizing simplified models to develop a clear understanding of how matter interacts with attosecond pulses of light. An introductory chapter outlines the structure of atoms and molecules and the properties of a focused laser beam. Detailed discussion of the fundamental theory of attosecond and strong-field physics follows, including the molecular tunnelling ionization model (MO-ADK theory), the quantitative rescattering (QRS) model, and the laser induced electronic diffraction (LIED) theory for probing the change of atomic configurations in a molecule. Highlighting the cutting-edge developments in attosecond and strong field physics, and identifying future opportunities and challenges, this self-contained text is invaluable for students and researchers in the field.
Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once — setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.
Due to the rapid progress in laser technology a wealth of novel fundamental and applied applications of lasers in atomic and plasma physics have become possible. This book focuses on the interaction of high intensity lasers with matter. It reviews the state of the art of high power laser sources, intensity laser-atom and laser-plasma interactions, laser matter interaction at relativistic intensities, and QED with intense lasers.