Download Free Ultrafast Dynamics In Semiconductor Optical Amplifiers Book in PDF and EPUB Free Download. You can read online Ultrafast Dynamics In Semiconductor Optical Amplifiers and write the review.

In this book, nonlinear silicon-organic hybrid waveguides and quantum dot semiconductor optical amplifiers are investigated. Advantageous applications are identified, and corresponding proof-of-principle experiments are performed. Highly nonlinear silicon-organic hybrid waveguides show potential for all-optical signal processing based on fourwave mixing and cross-phase modulation. Quantum dot semiconductor optical amplifiers operate as linear amplifiers with a very large dynamic range.
This thesis examines the unique properties of gallium arsenide (GaAs)-based quantum-dot semiconductor optical amplifiers for optical communication networks, introducing readers to their fundamentals, basic parameters and manifold applications. The static and dynamic properties of these amplifiers are discussed extensively in comparison to conventional, non quantum-dot based amplifiers, and their unique advantages are elaborated on, such as the fast carrier dynamics and the decoupling of gain and phase dynamics. In addition to diverse amplification scenarios involving single and multiple high symbol rate amplitude and phase-coded data signals, wide-range wavelength conversion as a key functionality for optical signal processing is investigated and discussed in detail. Furthermore, two novel device concepts are developed and demonstrated that have the potential to significantly simplify network architectures, reducing the investment and maintenance costs as well as the energy consumption of future networks.
In this monograph, the authors address the physics and engineering together with the latest achievements of efficient and compact ultrafast lasers based on novel quantum-dot structures and devices. Their approach encompasses a broad range of laser systems, while taking into consideration not only the physical and experimental aspects but also the much needed modeling tools, thus providing a holistic understanding of this hot topic.
"Nanostructure Semiconductor Optical Amplifiers" reviews all-optical processing methods currently available and presents semiconductor optical amplifiers (SOAs) as a new building block for this purpose. The authors discuss the overcomes of high frequency operation of SOAs and propose a new all-optical pumping method for the implementation of semiconductor optical amplifiers.
This invaluable book provides a comprehensive treatment of design and applications of semiconductor optical amplifiers (SOA). SOA is an important component for optical communication systems. It has applications as in-line amplifiers and as functional devices in evolving optical networks. The functional applications of SOAs were first studied in the early 1990's, since then the diversity and scope of such applications have been steadily growing. This is the second edition of a book on Semiconductor Optical Amplifiers first published in 2006 by the same authors. Several chapters and sections representing new developments in the chapters of the first edition have been added. The new chapters cover quantum dot semiconductor optical amplifiers (QD-SOA), reflective semiconductor optical amplifiers (RSOA) for passive optical network applications, two-photon absorption in amplifiers, and, applications of SOA as broadband sources. They represent advances in research, technology and commercial trends in the area of semiconductor optical amplifiers.Semiconductor Optical Amplifier is self-contained and unified in presentation. It can be used as an advanced text by graduate students and by practicing engineers. It is also suitable for non-experts who wish to have an overview of optical amplifiers. The treatments in the book are detailed enough to capture the interest of the curious reader and complete enough to provide the necessary background to explore the subject further.
In this book, semiconductor optical amplifiers (SOAs) are studied with a view to linear and nonlinear applications in next-generation optical networks. Quantum-dot SOAs can be optimized for linear amplification of signals with different modulation formats and multiplexing techniques. Conversely, bulk SOAs can be easily optimized for operation in the nonlinear regime. However, due to the fast carrier recovery times in QD SOAs we also look into nonlinear applications with these devices.
The semiconductor optical amplifier has emerged as an important component in many optical fibre communication, switching and signal processing systems. This invaluable information source provides a comprehensive and detailed treatment of the design and applications of SOAs.
This book provides a comprehensive review of the state-of-the art of optical signal processing technologies and devices. It presents breakthrough solutions for enabling a pervasive use of optics in data communication and signal storage applications. It presents presents optical signal processing as solution to overcome the capacity crunch in communication networks. The book content ranges from the development of innovative materials and devices, such as graphene and slow light structures, to the use of nonlinear optics for secure quantum information processing and overcoming the classical Shannon limit on channel capacity and microwave signal processing. Although it holds the promise for a substantial speed improvement, today’s communication infrastructure optics remains largely confined to the signal transport layer, as it lags behind electronics as far as signal processing is concerned. This situation will change in the near future as the tremendous growth of data traffic requires energy efficient and fully transparent all-optical networks. The book is written by leaders in the field.
Semiconductor-based Ultra-Fast All-Optical Signal Processing Devices –a key technology for the next generation of ultrahigh bandwidth optical communication systems! The introduction of ultra-fast communication systems based on all-optical signal processing is considered to be one of the most promising ways to handle the rapidly increasing global communication traffic. Such systems will enable real time super-high definition moving pictures such as high reality TV-conference, remote diagnosis and surgery, cinema entertainment and many other applications with small power consumption. The key issue to realize such systems is to develop ultra-fast optical devices such as light sources, all-optical gates and wavelength converters. Ultra-Fast All-Optical Signal Processing Devices discusses the state of the art development of semiconductor-based ultrafast all-optical devices, and their various signal processing applications for bit-rates 100Gb/s to 1Tb/s. Ultra-Fast All-Optical Signal Processing Devices: Provides a thorough and in-depth treatment of the most recent achievements in ultrafast all-optical devices Discusses future networks with applications such as HD-TV and super-high definition moving screens as a motivating background for devices research Covers mode-locked semiconductor lasers, electro-absorption modulator based 160Gb/s signal sources, SOA based symmetric Mach-Zehnder type all-optical gates, intersubband transition gate device, and more Explains the technical issues behind turning the ultra-fast optical devices into practical working tools Examples of above 160Gb/s transmission experiments Discusses future prospects of the ultra-fast signal processing devices This invaluable reference will provide device researchers and engineers in industry, researchers at universities (including graduate students, and post doctorial researchers and professors) and research institutes with a thorough understanding of ultrahigh bandwidth optical communication systems. Device and communication market watchers will also find this book useful.
Ultrafast photonics has become an interdisciplinary topic of high international research interest because of the spectacular development of compact and efficient lasers producing optical pulses with durations in the femtosecond time domain. Present day long-haul telecommunications systems are almost entirely based on the transmission of short burst