Download Free Ultracold Gases And Quantum Information Book in PDF and EPUB Free Download. You can read online Ultracold Gases And Quantum Information and write the review.

In recent years, there has been much synergy between the exciting areas of quantum information science and ultracold atoms. This volume, as part of the proceedings for the XCI session of Les Houches School of Physics (held for the first time outside Europe in Singapore) brings together experts in both fields. The theme of the school focused on two principal topics: quantum information science and ultracold atomic physics. The topics range from Bose Einstein Condensates to Degenerate Fermi Gases to fundamental concepts in Quantum Information Sciences, including some special topics on Quantum Hall Effects, Quantum Phase Transition, Interactions in Quantum Fluids, Disorder and Interference Phenomenoma, Trapped Ions and Atoms, and Quantum Optical Devices.
In recent years, there has been much synergy between the exciting areas of quantum information science and ultracold atoms. This volume, as part of the proceedings for the XCI session of Les Houches School of Physics (held for the first time outside Europe in Singapore) brings together experts in both fields. The theme of the school focused on two principal topics: quantum information science and ultracold atomic physics. The topics range from Bose Einstein Condensates to Degenerate Fermi Gases to fundamental concepts in Quantum Information Sciences, including some special topics on Quantum Hall Effects, Quantum Phase Transition, Interactions in Quantum Fluids, Disorder and Interference Phenomenoma, Trapped Ions and Atoms, and Quantum Optical Devices.
Since 1951, the prestigious Les Houches summer school has given rigorous graduate programmes in France. In July 2009, the first Les Houches school outside Europe took place in Singapore. This volume gathers the lectures conducted at the four-week school, focused on two exciting key topics: quantum information science and ultracold atomic physics.
Quantum computers, though not yet available on the market, will revolutionize the future of information processing. Quantum computers for special purposes like quantum simulators are already within reach. The physics of ultracold atoms, ions and molecules offer unprecedented possibilities of control of quantum many body systems and novel possibilities of applications to quantum information processing and quantum metrology. Particularly fascinating is the possibility of using ultracold atoms in lattices to simulate condensed matter or even high energy physics. This book provides a complete and comprehensive overview of ultracold lattice gases as quantum simulators. It opens up an interdisciplinary field involving atomic, molecular and optical physics, quantum optics, quantum information, condensed matter and high energy physics. The book includes some introductory chapters on basic concepts and methods, and then focuses on the physics of spinor, dipolar, disordered, and frustrated lattice gases. It reviews in detail the physics of artificial lattice gauge fields with ultracold gases. The last part of the book covers simulators of quantum computers. After a brief course in quantum information theory, the implementations of quantum computation with ultracold gases are discussed, as well as our current understanding of condensed matter from a quantum information perspective.
This book provides authoritative tutorials on the most recent achievements in the field of quantum gases at the interface between atomic physics and quantum optics, condensed matter physics, nuclear and high-energy physics, non-linear physics, and quantum information.
The rapidly developing topic of ultracold atoms has many actual and potential applications for condensed-matter science, and the contributions to this book emphasize these connections. Ultracold Bose and Fermi quantum gases are introduced at a level appropriate for first-year graduate students and non-specialists such as more mature general physicists. The reader will find answers to questions like: how are experiments conducted and how are the results interpreted? What are the advantages and limitations of ultracold atoms in studying many-body physics? How do experiments on ultracold atoms facilitate novel scientific opportunities relevant to the condensed-matted community? This volume seeks to be comprehensible rather than comprehensive; it aims at the level of a colloquium, accessible to outside readers, containing only minimal equations and limited references. In large part, it relies on many beautiful experiments from the past fifteen years and their very fruitful interplay with basic theoretical ideas. In this particular context, phenomena most relevant to condensed-matter science have been emphasized. Introduces ultracold Bose and Fermi quantum gases at a level appropriate for non-specialists Discusses landmark experiments and their fruitful interplay with basic theoretical ideas Comprehensible rather than comprehensive, containing only minimal equations
Physicists know how to produce gases at a few billionths of a degree above absolute zero. The cooling methods apply not only to atoms but also to ions and molecules. This field of research has three times been awarded the Nobel Prize. The field experienced remarkable growth when experimentalists learned how to vary at will the interactions between particles, trapping them with optical tweezers or in optical gratings with adjustable geometry. Artificial crystals made of atoms or molecules can be built to simulate the structure of matter and elucidate some of its magnetic properties, hopefully contributing to the understanding of high-temperature superconductivity. The phenomenon of quantum entanglement is the basis for new devices for the storage and transmission of quantum information. Spectacular progress is constantly being made in metrology. For example, ultra-cold atom or ion clocks measure time to better than one second over the lifetime of the Universe. New types of industrial gravimeters and gyroscopes are improving the sensitivity of seismology and navigation in space. In addition, the extreme precision of the measurements allows tests of the fundamental laws of physics, such as quantum electrodynamics, Lorentz invariance or possible variations of the fundamental constants. The field of ultra-cold particles has now reached the stage where it provides insights in the fields of condensed matter, chemistry and even cosmology.
This thesis describes the experimental realisation and characterisation of three non-trivial trapping geometries for ultracold atoms. The double-well, ring and to some degree shell trap are examples of a highly versatile class of traps called time-averaged adiabatic potentials (TAAPs). In this experiment the TAAPs arise from the combination of three independent magnetic fields; a static quadrupole field dressed by a uniform radio-frequency field is time- averaged by a bias field oscillating in the kHz regime. The result is a very smooth potential, within which ultracold atoms can be evaporatively cooled to quantum degeneracy, and subsequently manipulated into new geometries without destroying the quantum coherence. The vertically offset double-well potential provided the first example of ul- tracold atoms confined in a TAAP. The same potential is used to demonstrate efficient evaporative cooling across the Bose-Einstein condensate (BEC) phase transition using only the Landau-Zener loss mechanism. Switching off the time- averaging fields loads atoms from the double-well TAAP into the rf-dressed shell trap. A characterisation of this potential measured low heating rates and life- times of up to 58 s. With efforts ongoing to increase the trap anisotropy, this potential shows promise for research into the static and rapidly rotating 2D systems. In the presence of a single time-averaging field, the shell geometry is transformed into a ring-shaped trap with an adjustable radius. The ring trap can be controllably tilted and progress towards multiply connected condensates is being made. A rotation scheme to spin up atoms in the ring trap has been demonstrated, presenting the opportunity to investigate the dynamics of super- flow in degenerate quantum gases.
Abstract: This thesis describes a new apparatus designed to study ultracold gases of rubidium. The apparatus comprises a six-beam MOT chamber and a dierential pumping stage leading into a 'science chamber'. This science chamber is constructed from a rectangular glass cell. Atomic gases of rubidium are collected in a MOT and then transferred into a magnetic quadrupole trap. This quadrupole trap is mounted on a motorised translation stage. This setup transports the atoms into the science chamber, where they are transferred into a static quadrupole trap which is built around the glass cell. During the transport the atoms are deected over a glass prism, which shields the science chamber from stray rubidium from the MOT chamber. The magnetic transport is studied in detail and the deection over the glass prism is fully described simulating the displacement of the quadrupole trap. Using the magnetic quadrupole trap in the science chamber to store one rubidium isotope, we are able to load the other rubidium isotope in the MOT chamber and transfer it also into the science chamber. There, the two magnetic traps are merged and variable ratios of isotopic mixtures can be created. The merging of the two quadrupole traps could be employed in future experiments to cool 85Rb sympathetically with 87Rb. In the science chamber forced radio-frequency evaporation is performed and the loading of a far-detuned dipole trap is studied. Initially the dipole trap is realised as a hybrid trap, a single beam dipole trap in combination with the quadrupole trap. Further studies include the loading of a crossed beam dipole trap. We demonstrate that the apparatus is capable of producing 87Rb condensates. Preliminary studies of 85Rb in the dipole trap are included which hopefully in future will lead to a quantum degenerate gas of 85Rb.