Download Free Ultracold Atoms For Foundational Tests Of Quantum Mechanics Book in PDF and EPUB Free Download. You can read online Ultracold Atoms For Foundational Tests Of Quantum Mechanics and write the review.

This thesis presents a theoretical investigation into the creation and exploitation of quantum correlations and entanglement among ultracold atoms. Specifically, it focuses on these non-classical effects in two contexts: (i) tests of local realism with massive particles, e.g., violations of a Bell inequality and the EPR paradox, and (ii) realization of quantum technology by exploitation of entanglement, for example quantum-enhanced metrology. In particular, the work presented in this thesis emphasizes the possibility of demonstrating and characterizing entanglement in realistic experiments, beyond the simple “toy-models” often discussed in the literature. The importance and relevance of this thesis are reflected in a spate of recent publications regarding experimental demonstrations of the atomic Hong-Ou-Mandel effect, observation of EPR entanglement with massive particles and a demonstration of an atomic SU(1,1) interferometer. With a separate chapter on each of these systems, this thesis is at the forefront of current research in ultracold atomic physics.
As part of the Physics 2010 decadal survey project, the Department of Energy and the National Science Foundation requested that the National Research Council assess the opportunities, over roughly the next decade, in atomic, molecular, and optical (AMO) science and technology. In particular, the National Research Council was asked to cover the state of AMO science, emphasizing recent accomplishments and identifying new and compelling scientific questions. Controlling the Quantum World, discusses both the roles and challenges for AMO science in instrumentation; scientific research near absolute zero; development of extremely intense x-ray and laser sources; exploration and control of molecular processes; photonics at the nanoscale level; and development of quantum information technology. This book also offers an assessment of and recommendations about critical issues concerning maintaining U.S. leadership in AMO science and technology.
Space-based laboratory research in fundamental physics is an emerging research discipline that offers great discovery potential and at the same time could drive the development of technological advances which are likely to be important to scientists and technologists in many other different research fields. The articles in this review volume have been contributed by participants of the international workshop “From Quantum to Cosmos: Fundamental Physics Research in Space” held at the Airlie Center in Warrenton, Virginia, USA, on May 21-24, 2006. This unique volume discusses the advances in our understanding of fundamental physics that are anticipated in the near future, and evaluates the discovery potential of a number of recently proposed space-based gravitational experiments. Specific research areas covered include various tests of general relativity and alternative theories, search of physics beyond the Standard Model, investigations of possible violations of the equivalence principle, search for new hypothetical long- and short-range forces, variations of fundamental constants, tests of Lorentz invariance and attempts at unification of the fundamental interactions. The book also encompasses experiments aimed at the discovery of novel phenomena, including dark matter candidates, and studies of dark energy.
This thesis unites the fields of optical atomic clocks and ultracold molecular science, laying the foundation for optical molecular measurements of unprecedented precision. Building upon optical manipulation techniques developed by the atomic clock community, this work delves into attaining surgical control of molecular quantum states. The thesis develops two experimental observables that one can measure with optical-lattice-trapped ultracold molecules: extremely narrow optical spectra, and angular distributions of photofragments that are ejected when the diatomic molecules are dissociated by laser light pulses. The former allows molecular spectroscopy approaching the level of atomic clocks, leading into molecular metrology and tests of fundamental physics. The latter opens the field of ultracold chemistry through observation of quantum effects such as matter-wave interference of photofragments and tunneling through reaction barriers. The thesis also describes a discovery of a new method of thermometry that can be used near absolute zero temperatures for particles lacking cycling transitions, solving a long-standing experimental problem in atomic and molecular physics.
The primary focus of this thesis is to theoretically describe nanokelvin experiments in cold atomic gases, which offer the potential to revolutionize our understanding of strongly correlated many-body systems. The thesis attacks major challenges of the field: it proposes and analyzes experimental protocols to create new and interesting states of matter and introduces theoretical techniques to describe probes of these states. The phenomena considered include the fractional quantum Hall effect, spectroscopy of strongly correlated states, and quantum criticality, among others. The thesis also clarifies experiments on disordered quantum solids, which display a variety of exotic phenomena and are candidates to exhibit so-called "supersolidity." It collects experimental results and constrains their interpretation through theoretical considerations. This Doctoral Thesis has been accepted by Cornell University, Ithaca, USA.
Crucial to most research in physics, as well as leading to the development of inventions such as the transistor and the laser, quantum mechanics approaches its centenary with an impressive record. However, the field has also long been the subject of ongoing debates about the foundations and interpretation of the theory, referred to as the quantum controversy. This Oxford Handbook offers a historical overview of the contrasts which have been at the heart of quantum physics for the last 100 years. Drawing on the wide-ranging expertise of several contributors working across physics, history, and philosophy, the handbook outlines the main theories and interpretations of quantum physics. It goes on to tackle the key controversies surrounding the field, touching on issues such as determinism, realism, locality, classicality, information, measurements, mathematical foundations, and the links between quantum theory and gravity. This engaging introduction is an essential guide for all those interested in the history of scientific controversies and history of quantum physics. It also provides a fascinating examination of the potential of quantum physics to influence new discoveries and advances in fields such quantum information and computing.
This book traces the evolution of Atomic Physics from precision spectroscopy to the manipulation of atoms at a billionth of a degree above absolute zero. Quantum worlds can be simulated and fundamental theories, such as General Relativity and Quantum Electrodynamics, can be tested with table-top experiments.
Comprises a comprehensive reference source that unifies the entire fields of atomic molecular and optical (AMO) physics, assembling the principal ideas, techniques and results of the field. 92 chapters written by about 120 authors present the principal ideas, techniques and results of the field, together with a guide to the primary research literature (carefully edited to ensure a uniform coverage and style, with extensive cross-references). Along with a summary of key ideas, techniques, and results, many chapters offer diagrams of apparatus, graphs, and tables of data. From atomic spectroscopy to applications in comets, one finds contributions from over 100 authors, all leaders in their respective disciplines. Substantially updated and expanded since the original 1996 edition, it now contains several entirely new chapters covering current areas of great research interest that barely existed in 1996, such as Bose-Einstein condensation, quantum information, and cosmological variations of the fundamental constants. A fully-searchable CD- ROM version of the contents accompanies the handbook.
Comprehensive introduction to the theory of superconducting circuits and their application in quantum computing and simulation.