Download Free Ultra Low Input Power Conversion Circuits Based On Tunnel Fets Book in PDF and EPUB Free Download. You can read online Ultra Low Input Power Conversion Circuits Based On Tunnel Fets and write the review.

The increasing demand in electronic portability imposes low power consumption as a key metric to analog and digital circuit design. Tunnel FET (TFET) devices have been explored mostly in digital circuits, showing promising results for ultra-low power and energy efficient circuit applications. The TFET presents a low inverse sub-threshold slope (SS) that allows a low leakage energy consumption, desirable in many digital circuits, especially memories.In this book, the TFET is explored as an alternative technology also for ultra-low power and voltage conversion and management circuits, suitable for weak energy harvesting (EH) sources. The TFET distinct electrical characteristics under reverse bias conditions require changes in conventional circuit topologies. In this book, ultra-low input power conversion circuits based on TFETs are designed and analyzed, evaluating their performance as rectifiers, charge pumps and power management circuits (PMC) for RF and DC EH sources.
75th Anniversary of the Transistor 75th anniversary commemorative volume reflecting the transistor's development since inception to current state of the art 75th Anniversary of the Transistor is a commemorative anniversary volume to celebrate the invention of the transistor. The anniversary volume was conceived by the IEEE Electron Devices Society (EDS) to provide comprehensive yet compact coverage of the historical perspectives underlying the invention of the transistor and its subsequent evolution into a multitude of integration and manufacturing technologies and applications. The book reflects the transistor's development since inception to the current state of the art that continues to enable scaling to very large-scale integrated circuits of higher functionality and speed. The stages in this evolution covered are in chronological order to reflect historical developments. Narratives and experiences are provided by a select number of venerated industry and academic leaders, and retired veterans, of the semiconductor industry. 75th Anniversary of the Transistor highlights: Historical perspectives of the state-of-the-art pre-solid-state-transistor world (pre-1947) leading to the invention of the transistor Invention of the bipolar junction transistor (BJT) and analytical formulations by Shockley (1948) and their impact on the semiconductor industry Large scale integration, Moore's Law (1965) and transistor scaling (1974), and MOS/LSI, including flash memories — SRAMs, DRAMs (1963), and the Toshiba NAND flash memory (1989) Image sensors (1986), including charge-coupled devices, and related microsensor applications With comprehensive yet succinct and accessible coverage of one of the cornerstones of modern technology, 75th Anniversary of the Transistor is an essential reference for engineers, researchers, and undergraduate students looking for historical perspective from leaders in the field.
The book discusses the materials, devices, and methodologies that can be used for energy harvesting including advanced materials, devices, and systems. It describes synthesis and fabrication details of energy storage materials. It explains use of high-energy density thin films for future power systems, flexible and biodegradable energy storage devices, fuel cells and supercapacitors, nanogenerators for self-powered systems, and innovative energy harvesting methodologies. Features: Covers all relevant topics in energy harvesting research and focuses on the current state-of-the-art techniques and materials for this application. Showcases the true potential of the nature in energy harvesting industry by discussing various harvesting mechanisms based on renewable and sustainable energy sources. Explains the recent trends in flexible and wearable energy storage devices that are currently being used in IoT-based smart devices. Overviews of the state-of-the-art research performed on design and development of energy harvesting devices. Highlights the interdisciplinary research efforts needed in energy harvesting and storage devices to transform conceptual ideas to working prototypes. This book is aimed at graduate students and researchers in emerging materials, energy engineering, including harvesting and storage.
The book presents select proceedings of the International Conference on Micro and Nanoelectronics Devices, Circuits and Systems (MNDCS-2021). The volume includes cutting-edge research papers in the emerging fields of micro and nanoelectronics devices, circuits, and systems from experts working in these fields over the last decade. The book is a unique collection of chapters from different areas with a common theme and will be immensely useful to academic researchers and practitioners in the industry who work in this field.
This book provides a single-source reference to the state-of-the art in tunneling field effect transistors (TFETs). Readers will learn the TFETs physics from advanced atomistic simulations, the TFETs fabrication process and the important roles that TFETs will play in enabling integrated circuit designs for power efficiency.
Driven by a strong demand for mobile and portable electronics, the chip market will undoubtedly impose "low power" as the key metric for microprocessor design. Although circuit and system level methods can be employed to reduce power, the fundamental limit in the overall energy efficiency of a system is still rooted in the Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) operating principle and its immutable physics: an injection of thermally distributed carriers will not allow for switching characteristics better than 60 mV/dec at room temperature. This constraint ultimately defines the lowest energy consumed per digital operation attainable with current Complementary-Metal-Oxide-Semiconductor (CMOS) technology. In this work, Tunnel Field Effect Transistor (TFET) based on Band-to-Band Tunneling (BTBT) will be proposed and investigated as an alternative logic switch which can achieve steeper switching characteristics than the MOSFET to permit for lower threshold (V TH) and supply voltage (V DD) operation. It will be experimentally demonstrated that by employing Germanium (Ge) only in the source region of the device, a record high on to off current ratio (I ON /I OFF) can be obtained for 0.5 V operation. Technology Computer Aided Design (TCAD) calibrated to the measured data will be used to perform design optimization study. The performance of the optimized Ge-source TFET will be benchmarked against CMOS technology to show greater than 10x improvement in the overall energy efficiency for frequency range up to 500 MHz. The fundamental challenges associated with TFET-based digital logic design will be addressed. In order to mitigate these constraints, a circuit-level solution based on n-channel TFET Pass-Transistor Logic (PTL) will be proposed and demonstrated through mixed-mode simulations. The accompanying design modifications required at the device level will be discussed.
During the last decade, there has been a great deal of interest in TFETs. To the best authors’ knowledge, no book on TFETs currently exists. The proposed book provides readers with fundamental understanding of the TFETs. It explains the interesting characteristics of the TFETs, pointing to their strengths and weaknesses, and describes the novel techniques that can be employed to overcome these weaknesses and improve their characteristics. Different tradeoffs that can be made in designing TFETs have also been highlighted. Further, the book provides simulation example files of TFETs that could be run using a commercial device simulator.
Advanced Field-Effect Transistors: Theory and Applications offers a fresh perspective on the design and analysis of advanced field-effect transistor (FET) devices and their applications. The text emphasizes both fundamental and new paradigms that are essential for upcoming advancement in the field of transistors beyond complementary metal–oxide–semiconductors (CMOS). This book uses lucid, intuitive language to gradually increase the comprehension of readers about the key concepts of FETs, including their theory and applications. In order to improve readers’ learning opportunities, Advanced Field-Effect Transistors: Theory and Applications presents a wide range of crucial topics: Design and challenges in tunneling FETs Various modeling approaches for FETs Study of organic thin-film transistors Biosensing applications of FETs Implementation of memory and logic gates with FETs The advent of low-power semiconductor devices and related implications for upcoming technology nodes provide valuable insight into low-power devices and their applicability in wireless, biosensing, and circuit aspects. As a result, researchers are constantly looking for new semiconductor devices to meet consumer demand. This book gives more details about all aspects of the low-power technology, including ongoing and prospective circumstances with fundamentals of FET devices as well as sophisticated low-power applications.
This book will give insight into emerging semiconductor devices from their applications in electronic circuits, which form the backbone of electronic equipment. It provides desired exposure to the ever-growing field of low-power electronic devices and their applications in nanoscale devices, memory design, and biosensing applications. Tunneling Field Effect Transistors: Design, Modeling and Applications brings researchers and engineers from various disciplines of the VLSI domain to together tackle the emerging challenges in the field of nanoelectronics and applications of advanced low-power devices. The book begins by discussing the challenges of conventional CMOS technology from the perspective of low-power applications, and it also reviews the basic science and developments of subthreshold swing technology and recent advancements in the field. The authors discuss the impact of semiconductor materials and architecture designs on TFET devices and the performance and usage of FET devices in various domains such as nanoelectronics, Memory Devices, and biosensing applications. They also cover a variety of FET devices, such as MOSFETs and TFETs, with various structures based on the tunneling transport phenomenon. The contents of the book have been designed and arranged in such a way that Electrical Engineering students, researchers in the field of nanodevices and device-circuit codesign, as well as industry professionals working in the domain of semiconductor devices, will find the material useful and easy to follow.