Download Free Ultimate Step By Step Guide To Machine Learning Using Python Book in PDF and EPUB Free Download. You can read online Ultimate Step By Step Guide To Machine Learning Using Python and write the review.

*Start your Data Science career using Python today!* Are you ready to start your new exciting career? Ready to crush your machine learning career goals? Are you overwhelmed with complexity of the books on this subject?Then let this breezy and fun little book on Python and machine learning models make you a data scientist in 7 days! First part of this book introduces Python basics including: 1) Data Structures like Pandas 2) Foundational libraries like Numpy, Seaborn and Scikit-Learn Second part of this book shows you how to build predictive machine learning models step by step using techniques such as: 1) Regression analysis 2) Decision tree analysis 3) Training and testing data models 4) And much more! After reading this book you will be able to: 1) Code in Python with confidence 2) Build new machine learning models from scratch 3) Know how to clean and prepare your data for analytics 4) Speak confidently about statistical analysis techniques Data Science was ranked the fast-growing field by LinkedIn and Data Scientist is one of the most highly sought after and lucrative careers in the world! If you are on the fence about making the leap to a new and lucrative career, this is the book for you! What sets this book apart from other books on the topic of Python and Machine learning: 1) Step by step code examples and explanation 2) Complex concepts explained visually 3) Real world applicability of the machine learning models introduced 4) Bonus free code samples that you can try yourself without any prior experience in Python! What do I need to get started? You will have a step by step action plan in place once you finish this book and finally feel that you, can master data science and machine learning and start lucrative and rewarding career! Ready to dive in to the exciting world of Python and Machine Learning? Then scroll up to the top and hit that BUY BUTTON!
*Start your Data Science career using Python today!*Are you ready to start your new exciting career? Ready to master artificial intelligence and deep learning concepts?Are you overwhelmed with complexity of the books on this subject?Then let this breezy and fun little book on Python, Machine Learning and Deep Learning models make you a Data Scientist in 7 days!This book continues from where the first book in the series, Ultimate Step by Step Guide to Machine Learning Using Python, left of. In the first book you were introduced to Python concepts such as: -Data Structures like Pandas -Foundational libraries like Numpy, Seaborn and Scikit-Learn-Regression analysis-Classification-Clustering-Association Learning-Dimension ReductionThis book builds on those concepts to expand on Machine Learning algorithms like: -Linear and Logistical regression-Decision tree-Support vector machines (SVM)After that, this book takes you on a journey into Deep Learning and Neural Networks with important concepts and libraries like: -Convolutional and Recurrent Neural Networks-TensorFlow-Keras-PyTorch-Keras-Apache MXNet-Microsoft Cognitive Toolkit (CNTK)The final part of the book covers all foundational concepts that are required for Amazon Web Services (AWS) Certified Machine Learning Specialization by explaining how to deploy your models at scale on Cloud technologies. While AWS is used in the book for illustrative purposes, Microsoft Azure and Google Cloud are also introduced as alternative cloud technologies. After reading this book you will be able to: -Code in Python with confidence-Build new machine learning and deep learning models from scratch-Know how to clean and prepare your data for analytics-Speak confidently about statistical analysis techniquesData Science was ranked the fast-growing field by LinkedIn and Data Scientist is one of the most highly sought after and lucrative careers in the world!If you are on the fence about making the leap to a new and lucrative career, this is the book for you!What sets this book apart from other books on the topic of Python and Machine learning: -Step by step code examples and explanation-Complex concepts explained visually-Real world applicability of the machine learning and deep learning models introducedWhat do I need to get started?You will have a step by step action plan in place once you finish this book and finally feel that you, can master data science and artificial intelligence and start a lucrative and rewarding career! Ready to dive in to the exciting world of Python and Deep Learning?Then scroll up to the top and hit that BUY BUTTON!
Explore fundamental to advanced Python 3 topics in six steps, all designed to make you a worthy practitioner. This updated version’s approach is based on the “six degrees of separation” theory, which states that everyone and everything is a maximum of six steps away and presents each topic in two parts: theoretical concepts and practical implementation using suitable Python 3 packages. You’ll start with the fundamentals of Python 3 programming language, machine learning history, evolution, and the system development frameworks. Key data mining/analysis concepts, such as exploratory analysis, feature dimension reduction, regressions, time series forecasting and their efficient implementation in Scikit-learn are covered as well. You’ll also learn commonly used model diagnostic and tuning techniques. These include optimal probability cutoff point for class creation, variance, bias, bagging, boosting, ensemble voting, grid search, random search, Bayesian optimization, and the noise reduction technique for IoT data. Finally, you’ll review advanced text mining techniques, recommender systems, neural networks, deep learning, reinforcement learning techniques and their implementation. All the code presented in the book will be available in the form of iPython notebooks to enable you to try out these examples and extend them to your advantage. What You'll Learn Understand machine learning development and frameworksAssess model diagnosis and tuning in machine learningExamine text mining, natuarl language processing (NLP), and recommender systemsReview reinforcement learning and CNN Who This Book Is For Python developers, data engineers, and machine learning engineers looking to expand their knowledge or career into machine learning area.
Master Machine Learning Fundamentals Whether you’re an aspiring data scientist, business professional, or curious learner, Machine Learning Fundamentals in Action is your essential guide to the world of machine learning. Packed with practical examples and real-world applications, this book helps you navigate key concepts and techniques transforming industries today. Unlock the Power of Machine Learning Discover every step, from data preparation to building and deploying models, with clear and actionable insights. Who Is This Book For? Aspiring Data Scientists: Build a solid foundation in ML concepts. Business Professionals: Use data-driven decisions to solve challenges. Developers and Engineers: Get hands-on experience with model-building techniques. Curious Learners: Understand ML with easy, step-by-step explanations. What You’ll Learn: Core ML principles and real-world applications Types of ML: Supervised, Unsupervised, and Reinforcement Learning Advanced topics: Neural networks, deep learning, and more How to deploy models and avoid common pitfalls Start your machine learning journey today!
Ready to discover the Machine Learning world? Machine learning paves the path into the future and it’s powered by Python. All industries can benefit from machine learning and artificial intelligence whether we’re talking about private businesses, healthcare, infrastructure, banking, or social media. What exactly does it do for us and what does a machine learning specialist do? Machine learning professionals create and implement special algorithms that can learn from existing data to make an accurate prediction on new never before seen data. Python Machine Learning presents you a step-by-step guide on how to create machine learning models that lead to valuable results. The book focuses on machine learning theory as much as practical examples. You will learn how to analyse data, use visualization methods, implement regression and classification models, and how to harness the power of neural networks. By purchasing this book, your machine learning journey becomes a lot easier. While a minimal level of Python programming is recommended, the algorithms and techniques are explained in such a way that you don’t need to be intimidated by mathematics. The Topics Covered Include: Machine learning fundamentals How to set up the development environment How to use Python libraries and modules like Scikit-learn, TensorFlow, Matplotlib, and NumPy How to explore data How to solve regression and classification problems Decision trees k-means clustering Feed-forward and recurrent neural networks Get your copy now
Machine Learning Guide for Oil and Gas Using Python: A Step-by-Step Breakdown with Data, Algorithms, Codes, and Applications delivers a critical training and resource tool to help engineers understand machine learning theory and practice, specifically referencing use cases in oil and gas. The reference moves from explaining how Python works to step-by-step examples of utilization in various oil and gas scenarios, such as well testing, shale reservoirs and production optimization. Petroleum engineers are quickly applying machine learning techniques to their data challenges, but there is a lack of references beyond the math or heavy theory of machine learning. Machine Learning Guide for Oil and Gas Using Python details the open-source tool Python by explaining how it works at an introductory level then bridging into how to apply the algorithms into different oil and gas scenarios. While similar resources are often too mathematical, this book balances theory with applications, including use cases that help solve different oil and gas data challenges. - Helps readers understand how open-source Python can be utilized in practical oil and gas challenges - Covers the most commonly used algorithms for both supervised and unsupervised learning - Presents a balanced approach of both theory and practicality while progressing from introductory to advanced analytical techniques
Master probabilistic graphical models by learning through real-world problems and illustrative code examples in Python About This Book Gain in-depth knowledge of Probabilistic Graphical Models Model time-series problems using Dynamic Bayesian Networks A practical guide to help you apply PGMs to real-world problems Who This Book Is For If you are a researcher or a machine learning enthusiast, or are working in the data science field and have a basic idea of Bayesian Learning or Probabilistic Graphical Models, this book will help you to understand the details of Graphical Models and use it in your data science problems. This book will also help you select the appropriate model as well as the appropriate algorithm for your problem. What You Will Learn Get to know the basics of Probability theory and Graph Theory Work with Markov Networks Implement Bayesian Networks Exact Inference Techniques in Graphical Models such as the Variable Elimination Algorithm Understand approximate Inference Techniques in Graphical Models such as Message Passing Algorithms Sample algorithms in Graphical Models Grasp details of Naive Bayes with real-world examples Deploy PGMs using various libraries in Python Gain working details of Hidden Markov Models with real-world examples In Detail Probabilistic Graphical Models is a technique in machine learning that uses the concepts of graph theory to compactly represent and optimally predict values in our data problems. In real world problems, it's often difficult to select the appropriate graphical model as well as the appropriate inference algorithm, which can make a huge difference in computation time and accuracy. Thus, it is crucial to know the working details of these algorithms. This book starts with the basics of probability theory and graph theory, then goes on to discuss various models and inference algorithms. All the different types of models are discussed along with code examples to create and modify them, and also to run different inference algorithms on them. There is a complete chapter devoted to the most widely used networks Naive Bayes Model and Hidden Markov Models (HMMs). These models have been thoroughly discussed using real-world examples. Style and approach An easy-to-follow guide to help you understand Probabilistic Graphical Models using simple examples and numerous code examples, with an emphasis on more widely used models.
Do you need your computer to learn as it works? Would this ability help you in your day to day work? Is Python something you are already using but could improve upon? Machine Learning is the future and is here to stay. As such, you will want to know all the principles behind it, that will allow you to build your very own models and applications. But stuffy and long-winded books take time to read, so you probably want something that’s easier to digest. This book provides the clear and concise information you’ve been looking for. Full of well-defined details, concepts and examples, Python Machine Learning: The Ultimate Expert Guide to Learn Python Machine Learning Step by Step covers all your vital machine learning procedures, with chapters that include: • How advanced tensorflow can be used • Neural network models and how to get the most from them • Machine learning with Generative Adversarial Networks • Translating images with cross domain GANs • TF clusters and how to use them • How to debug TF models • And lots more… If you’ve been using Python for some time and want to become even better at it, then Python Machine Learning: The Ultimate Expert Guide is the first book you should be reading on the subject. Crammed with great tips, advice and strategies for making sure you are at the top of your game, this is a book that will change your Python experience for ever. Get your copy now!
Python Made Easy: Beginners Guide to Programming and Data Analysis using Python Get comprehensive learning of Python Programming starting from the very basics and going up to utilizing python libraries for data analysis and Visualization. Based on the author’s journey to master Python, this book will help you to quickly start with writing programs and solving your problems using Python. It provides an ideal and elegant way to start learning Python, both for a newcomer to the programming world and a professional developer expert in other languages. This book comes loaded with illustrations and real-life examples. It gives you exercises which challenge you to refresh your conceptual clarity and write better codes. It is super easy to follow and will work as a self-paced tutorial to get you started with the latest and best in Python. All the advanced Python features to date are included. • Get to know the history, present, and future of Data Science • Get introduced to the basics of Computer Programming • Explore the exciting world of Python using Anaconda • Learn how to install and use Python on your computer • Create your Variables, Objects and learn Syntax of operations • Explore Python’s built-in object types like Lists, dictionaries, Tuples, Strings and sets • Learn to make your codes reusable by using functions • Organize your codes, functions and other objects into larger components with Modules • Explore Classes – the Object-Oriented Programming tool for elegant codes • Write complex codes and learn how to handle Errors and Exceptions • Learn about NumPy arrays and operations on them • Explore data analysis using pandas on a real-life data set • Dive into the exciting world of Visualization with 3 chapters on Visualization and Matplotlib • Experience the Power of What you learnt by 3 projects • Learn to make your own application complete with GUI by using API
Key Features: Clear Explanations of Machine Learning Algorithms: The book offers clear and concise explanations of machine learning algorithms, ensuring that readers of all levels can grasp the concepts effortlessly. Hands-On Approach: Packed with practical examples using Python and code snippets, you'll gain a hands-on understanding of how each algorithm works and learn to implement them in real projects. Comprehensive Coverage: From linear regression and support vector machines to decision trees and neural networks, the book covers a wide array of algorithms, giving you a solid foundation to explore diverse problem domains. Performance Evaluation Methods: Learn how to evaluate the effectiveness of your models, identify areas for improvement, and optimize their performance using industry-standard evaluation techniques. Data Preprocessing Techniques: Discover the critical elements of data preprocessing that lay the groundwork for building robust and accurate machine learning models. Time Series Forecasting: Explore advanced algorithms specifically designed for time series data, a critical component of numerous real-world applications. Appendix for Easy Reference: Access all parameters of commonly used machine learning algorithms in a handy appendix, facilitating efficient model tuning.