Download Free Ubiquitin And Ubiquitin Like Modifications In Viral Infection And Innate Immunity Book in PDF and EPUB Free Download. You can read online Ubiquitin And Ubiquitin Like Modifications In Viral Infection And Innate Immunity and write the review.

Human coronaviruses caused the SARS epidemic that infected more than 8000 people, killing about ten percent of them in 32 countries. This book provides essential information on these viruses and the development of vaccines to control coronavirus infections.
The molecular and biochemical mechanisms involved in sumoylation have been the subject of intense interest in recent years. This volume, edited and written by leading international experts, is the first book to be devoted to sumoylation. It presents information on the history, evolution and mechanisms of sumoylation, discusses SUMO proteases, ligases and conjugation pathways, and reviews the impact on modification and nucleocytoplasmic transport, PML nuclear bodies, and transcriptional regulation. In addition, specialist chapters cover the role of sumoylation in yeast, viruses and the tumor suppressor P53.
Matrix metalloproteinases (MMPs) are members of an enzyme family and are critical for maintaining tissue allostasis. MMPs can catalyze normal turnover of the extracellular matrix (ECM) together with other metalloproteinases such as ADAM (a disintegrin and metalloproteinase) and ADAMTS (a disintegrin and metalloproteinase with thrombospondin motif) families. MMP activity is also regulated by a group of endogenous proteins called tissue inhibitor of metalloproteinases (TIMPs). All these proteins have a pivotal role involving ECM remodelling in normal physiological processes such as wound healing, embryogenesis, angiogenesis, bone remodelling, immunity, and the female reproductive cycle. An imbalance in the expression or activity of MMPs can also have important consequences in diseases such as cancer, cardiovascular disease, peripheral vascular disease, chronic leg ulcers, and multiple sclerosis. In recent years, MMPs have been found to play an important role in the field of precision medicine, as they may serve as biomarkers that may predict an individual's disease predisposition, state, or progression. MMPs are also thought to be a sensible target for molecular therapy. The aim of this Special Issue is to explore the most recent findings in this field that may have an impact in healthcare systems.
The literature on recoding is scattered, so this superb book ?lls a need by prov- ing up-to-date, comprehensive, authoritative reviews of the many kinds of recoding phenomena. Between 1961 and 1966 my colleagues and I deciphered the genetic code in Escherichia coli and showed that the genetic code is the same in E. coli, Xenopus laevis, and guinea pig tissues. These results showed that the code has been c- served during evolution and strongly suggested that the code appeared very early during biological evolution, that all forms of life on earth descended from a c- mon ancestor, and thus that all forms of life on this planet are related to one another. The problem of biological time was solved by encoding information in DNA and retrieving the information for each new generation, for it is easier to make a new organism than it is to repair an aging, malfunctioning one. Subsequently, small modi?cations of the standard genetic code were found in certain organisms and in mitochondria. Mitochondrial DNA only encodes about 10–13 proteins, so some modi?cations of the genetic code are tolerated that pr- ably would be lethal if applied to the thousands of kinds of proteins encoded by genomic DNA.
Concern about the environmental consequences of the widespread use of pesticides has increased, and evidence of pesticide-resistant virus vectors have continued to emerge. This volume presents a timely survey of the mechanisms of plant resistance and examines current developments in breeding for resistance, with particular emphasis on advances in genetic engineering which allow for the incorporation of viral genetic material into plants. Discusses the mechanisms of innate resistance in strains of tobacco, tomato, and cowpea; various aspects of induced resistance, including the characterization and roles of the pathogenesis-related proteins; antiviral substances and their comparison with interferon; and cross-protection between plant virus strains. Also presents several papers which evaluate the status of genetic engineering as it relates to breeding resistant plants. Among these are discussions of the potential use of plant viruses as gene vectors, gene coding for viral coat protein, satellite RNA, and antisense RNA, and practical issues such as the durability of resistant crop plants in the field.
The human ubiquitin proteasome system (UPS) is comprised of nearly 1000 proteins. Although originally identified as a mechanism of protein destruction, the UPS has numerous additional functions and mediates central signaling events in myriad processes involved in both cellular and organismal health and homeostasis. Numerous pathways within the UPS are implicated in disease, ranging from cancer to neurodegenerative diseases such as Parkinson's. The goal of this book is to deliver a collection of synopses of current areas of UPS research that highlights the importance of understanding the biology of the UPS to identify disease-relevant pathways, and the need to elucidate the molecular machinations within the UPS to develop methods for therapeutic modulation of these pathways.
This comprehensive account of the human herpesviruses provides an encyclopedic overview of their basic virology and clinical manifestations. This group of viruses includes human simplex type 1 and 2, Epstein–Barr virus, Kaposi's Sarcoma-associated herpesvirus, cytomegalovirus, HHV6A, 6B and 7, and varicella-zoster virus. The viral diseases and cancers they cause are significant and often recurrent. Their prevalence in the developed world accounts for a major burden of disease, and as a result there is a great deal of research into the pathophysiology of infection and immunobiology. Another important area covered within this volume concerns antiviral therapy and the development of vaccines. All these aspects are covered in depth, both scientifically and in terms of clinical guidelines for patient care. The text is illustrated generously throughout and is fully referenced to the latest research and developments.
Until recently, innate immunity was regarded as a relatively nonspecific system designed to engulf and destroy pathogens. However, new studies show that the innate immune system is highly developed in its ability to discriminate between self and foreign entities. Understanding this mechanism can lead to therapeutic strategies based on manipulation