Download Free Uav Or Drones For Remote Sensing Applications Volume 1 Book in PDF and EPUB Free Download. You can read online Uav Or Drones For Remote Sensing Applications Volume 1 and write the review.

This book is a printed edition of the Special Issue "UAV or Drones for Remote Sensing Applications" that was published in Sensors
This book is a printed edition of the Special Issue "UAV or Drones for Remote Sensing Applications" that was published in Sensors
This two-volume book set explores how sensors and computer vision technologies are used for the navigation, control, stability, reliability, guidance, fault detection, self-maintenance, strategic re-planning and reconfiguration of unmanned aircraft systems (UAS). Volume 1 concentrates on UAS control and performance methodologies including Computer Vision and Data Storage, Integrated Optical Flow for Detection and Avoidance Systems, Navigation and Intelligence, Modeling and Simulation, Multisensor Data Fusion, Vision in Micro-Aerial Vehicles (MAVs), Computer Vision in UAV using ROS, Security Aspects of UAV and Robot Operating System, Vision in Indoor and Outdoor Drones, Sensors and Computer Vision, and Small UAV for Persistent Surveillance. Volume 2 focuses on UAS deployment and applications including UAV-CPSs as a Testbed for New Technologies and a Primer to Industry 5.0, Human-Machine Interface Design, Open Source Software (OSS) and Hardware (OSH), Image Transmission in MIMO-OSTBC System, Image Database, Communications Requirements, Video Streaming, and Communications Links, Multispectral vs Hyperspectral Imaging, Aerial Imaging and Reconstruction of Infrastructures, Deep Learning as an Alternative to Super Resolution Imaging, and Quality of Experience (QoE) and Quality of Service (QoS).
This volume presents the conference proceedings from FinDrones2020. The book highlights recent developments in drone technology by experts, academicians, and entrepreneurs for applications in agriculture, forestry, and other industries. Emphasis is placed on contextualizing the conference presentations and content to Finland and the unique challenges typical to this region. The work will be of interest to academicians and professionals involved in remote sensing applications of unmanned aerial vehicles, as well as enthusiasts of drone technological developments.
Unmanned aircraft systems (UAS) are rapidly emerging as flexible platforms for capturing imagery and other data across the sciences. Many colleges and universities are developing courses on UAS-based data acquisition. Fundamentals of Capturing and Processing Drone Imagery and Data is a comprehensive, introductory text on how to use unmanned aircraft systems for data capture and analysis. It provides best practices for planning data capture missions and hands-on learning modules geared toward UAS data collection, processing, and applications. FEATURES Lays out a step-by-step approach to identify relevant tools and methods for UAS data/image acquisition and processing Provides practical hands-on knowledge with visual interpretation, well-organized and designed for a typical 16-week UAS course offered on college and university campuses Suitable for all levels of readers and does not require prior knowledge of UAS, remote sensing, digital image processing, or geospatial analytics Includes real-world environmental applications along with data interpretations and software used, often nonproprietary Combines the expertise of a wide range of UAS researchers and practitioners across the geospatial sciences This book provides a general introduction to drones along with a series of hands-on exercises that students and researchers can engage with to learn to integrate drone data into real-world applications. No prior background in remote sensing, GIS, or drone knowledge is needed to use this book. Readers will learn to process different types of UAS imagery for applications (such as precision agriculture, forestry, urban landscapes) and apply this knowledge in environmental monitoring and land-use studies.
This book provides an overview of the state of the art of radar systems to monitor drone activities. The book represents a must-have for all researchers working in this field as it establishes the state of the art and a benchmark for radar systems, detection, tracking and classification capabilities of this class of targets.
UNMANNED AERIAL VEHICLES FOR INTERNET OF THINGS This comprehensive book deeply discusses the theoretical and technical issues of unmanned aerial vehicles for deployment by industries and civil authorities in Internet of Things (IoT) systems. Unmanned aerial vehicles (UAVs) has become one of the rapidly growing areas of technology, with widespread applications covering various domains. UAVs play a very important role in delivering Internet of Things (IoT) services in small and low-power devices such as sensors, cameras, GPS receivers, etc. These devices are energy-constrained and are unable to communicate over long distances. The UAVs work dynamically for IoT applications in which they collect data and transmit it to other devices that are out of communication range. Furthermore, the benefits of the UAV include deployment at remote locations, the ability to carry flexible payloads, reprogrammability during tasks, and the ability to sense for anything from anywhere. Using IoT technologies, a UAV may be observed as a terminal device connected with the ubiquitous network, where many other UAVs are communicating, navigating, controlling, and surveilling in real time and beyond line-of-sight. The aim of the 15 chapters in this book help to realize the full potential of UAVs for the IoT by addressing its numerous concepts, issues and challenges, and develops conceptual and technological solutions for handling them. Applications include such fields as disaster management, structural inspection, goods delivery, transportation, localization, mapping, pollution and radiation monitoring, search and rescue, farming, etc. In addition, the book covers: Efficient energy management systems in UAV-based IoT networks IoE enabled UAVs Mind-controlled UAV using Brain-Computer Interface (BCI) The importance of AI in realizing autonomous and intelligent flying IoT Blockchain-based solutions for various security issues in UAV-enabled IoT The challenges and threats of UAVs such as hijacking, privacy, cyber-security, and physical safety. Audience: Researchers in computer science, Internet of Things (IoT), electronics engineering, as well as industries that use and deploy drones and other unmanned aerial vehicles.
This book is a printed edition of the Special Issue "UAV Sensors for Environmental Monitoring" that was published in Sensors
Newcome traces the family tree of unmanned aircraft all the way back to their roots as aerial torpedoes, which were the equivalent of todays cruise missiles. He discusses the work of leading aerospace pioneers whose efforts in the area of unmanned aviation have largely been ignored by history.
Unmanned aerial vehicles (UAV) have already become an affordable and cost-efficient tool to quickly map a targeted area for many emerging applications in the arena of ecological monitoring and biodiversity conservation. Managers, owners, companies, and scientists are using professional drones equipped with high-resolution visible, multispectral, or thermal cameras to assess the state of ecosystems, the effect of disturbances, or the dynamics and changes within biological communities inter alia. We are now at a tipping point on the use of drones for these type of applications over natural areas. UAV missions are increasing but most of them are testing applicability. It is time now to move to frequent revisiting missions, aiding in the retrieval of important biophysical parameters in ecosystems or mapping species distributions. This Special Issue shows UAV applications contributing to a better understanding of biodiversity and ecosystem status, threats, changes, and trends. It documents the enhancement of knowledge in ecological integrity parameters mapping, long-term ecological monitoring based on drones, mapping of alien species spread and distribution, upscaling ecological variables from drone to satellite images: methods and approaches, rapid risk and disturbance assessment using drones, mapping albedo with UAVs, wildlife tracking, bird colony and chimpanzee nest mapping, habitat mapping and monitoring, and a review on drones for conservation in protected areas.