Download Free Types In Logic Programming Book in PDF and EPUB Free Download. You can read online Types In Logic Programming and write the review.

This collection of original research papers assesses and summarizes the impact of types on logic programming. Type theory is a well-established branch of theoretical computer science that has played an important role in the development of imperative and functional programming languages. This collection of original research papers assesses and summarizes the impact of types on logic programming. It covers all of the major themes in this burgeoning field, including simple types, regular tree types, polymorphic types, subtypes, and dependent types. Language design issues as well as semantics, pragmatics, and applications of types are discussed.The benefits that type considerations have to offer logic programming are being increasingly realized: through type checking many errors can be caught before a program is run, resulting in more reliable programs; types form an expressive basis for module systems, since they prescribe a machine-verifiable interface for the code encapsulated within a module; and types may be used to improve performance of code generated by a compiler. The research in this collection describes these benefits as well as important differences in the impact of types in functional and logic programming.
This collection of original research papers assesses and summarizes the impact of types on logic programming. Type theory is a well-established branch of theoretical computer science that has played an important role in the development of imperative and functional programming languages. This collection of original research papers assesses and summarizes the impact of types on logic programming. It covers all of the major themes in this burgeoning field, including simple types, regular tree types, polymorphic types, subtypes, and dependent types. Language design issues as well as semantics, pragmatics, and applications of types are discussed.The benefits that type considerations have to offer logic programming are being increasingly realized: through type checking many errors can be caught before a program is run, resulting in more reliable programs; types form an expressive basis for module systems, since they prescribe a machine-verifiable interface for the code encapsulated within a module; and types may be used to improve performance of code generated by a compiler. The research in this collection describes these benefits as well as important differences in the impact of types in functional and logic programming.
A programming language based on a higher-order logic provides a declarative approach to capturing computations involving types, proofs and other syntactic structures.
Written for those who wish to learn Prolog as a powerful software development tool, but do not necessarily have any background in logic or AI. Includes a full glossary of the technical terms and self-assessment exercises.
A comprehensive introduction to type systems and programming languages. A type system is a syntactic method for automatically checking the absence of certain erroneous behaviors by classifying program phrases according to the kinds of values they compute. The study of type systems—and of programming languages from a type-theoretic perspective—has important applications in software engineering, language design, high-performance compilers, and security. This text provides a comprehensive introduction both to type systems in computer science and to the basic theory of programming languages. The approach is pragmatic and operational; each new concept is motivated by programming examples and the more theoretical sections are driven by the needs of implementations. Each chapter is accompanied by numerous exercises and solutions, as well as a running implementation, available via the Web. Dependencies between chapters are explicitly identified, allowing readers to choose a variety of paths through the material. The core topics include the untyped lambda-calculus, simple type systems, type reconstruction, universal and existential polymorphism, subtyping, bounded quantification, recursive types, kinds, and type operators. Extended case studies develop a variety of approaches to modeling the features of object-oriented languages.
This text aims at promoting a convergence between the technical challenges of developing advanced software systems and the formal techniques, tools and features evolving from the logic programming paradigm. It provides contributions towards different apsects of logic programming.
This book discusses issues concerning functional programming, logic programming, and integration of the two. The topics include language design, formal semantics, compilation techniques, program transformation, programming methods, integration of programming paradigms, constraint solving, and concurrency.